首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An annotated checklist of the chondrichthyan fishes (sharks, batoids and chimaeras) of the world is presented. As of 7 November 2015, the number of species totals 1188, comprising 16 orders, 61 families and 199 genera. The checklist includes nine orders, 34 families, 105 genera and 509 species of sharks; six orders, 24 families, 88 genera and 630 species of batoids (skates and rays); one order, three families, six genera and 49 species of holocephalans (chimaeras). The most speciose shark orders are the Carcharhiniformes with 284 species, followed by the Squaliformes with 119. The most species‐rich batoid orders are the Rajiformes with 285 species and the Myliobatiformes with 210. This checklist represents the first global checklist of chondrichthyans to include information on maximum size, geographic and depth distributions, as well as comments on taxonomically problematic species and recent and regularly overlooked synonymizations. Furthermore, a detailed analysis of the biogeographical diversity of the species across 10 major areas of occurrence is given, including updated figures for previously published hotspots of chondrichthyan biodiversity, providing the detailed numbers of chondrichthyan species per major area, and revealing centres of distribution for several taxa  相似文献   

2.
We analysed field-collected quantitative data of benthic marine molluscs across the Cretaceous–Palaeogene boundary in Patagonia to identify patterns and processes of biodiversity reconstruction after the end-Cretaceous mass extinction. We contrast diversity dynamics from nearshore environments with those from offshore environments. In both settings, Early Palaeogene (Danian) assemblages are strongly dominated by surviving lineages, many of which changed their relative abundance from being rare before the extinction event to becoming the new dominant forms. Only a few of the species in the Danian assemblages were newly evolved. In offshore environments, however, two newly evolved Danian bivalve species attained ecological dominance by replacing two ecologically equivalent species that disappeared at the end of the Cretaceous. In both settings, the total number of Danian genera at a locality remained below the total number of late Cretaceous (Maastrichtian) genera at that locality. We suggest that biotic interactions, in particular incumbency effects, suppressed post-extinction diversity and prevented the compensation of diversity loss by originating and invading taxa. Contrary to the total number of genera at localities, diversity at the level of individual fossiliferous horizons before and after the boundary is indistinguishable in offshore environments. This indicates an evolutionary rapid rebound to pre-extinction values within less than ca 0.5 million years. In nearshore environments, by contrast, diversity of fossiliferous horizons was reduced in the Danian, and this lowered diversity lasted for the entire studied post-extinction interval. In this heterogeneous environment, low connectivity among populations may have retarded the recolonisation of nearshore habitats by survivors.  相似文献   

3.
《Comptes Rendus Palevol》2014,13(4):235-258
The present work is based on semi-quantitative study carried on detailed sampling (samples are spaced by 5, 10 and 15 cm close to the boundary) of an essentially continuous and expanded section crossing the Cretaceous–Paleogene (K/Pg) boundary in Iran. By this work, we attempt to detail biostratigraphy based on planktonic foraminifera biozones and correlate biozones and subzones with dinocyst events. The entire Cretaceous–Paleogene interval contains rich, diversified and well-preserved planktonic foraminifera and dinoflagellate cyst assemblages. Four planktonic foraminiferal biozones have been recognized across the Cretaceous–Paleogene transition (K/Pg): Abathomphalus mayaroensis Biozone including Plummerita hantkeninoides Subzone from the Late Maastrichtian and Guembelitria cretacea (including Hedbergella holmdelensis and Parvularugoglobigerina longiapertura subzones), Parvularugoglobigerina eugubina Biozone and Parasubbotina pseudobulloides Biozone belonging to the Early Danian. These biozones have been correlated with four dinocyst biozones: the Manumiella seelandica Biozone belonging to the Late Maastrichtian and the Alisocysta reticulata, Senoniasphaera inornata and Damassadinium californicum biozones from the Early Danian. At this section, like at the El Kef section (GSSP for the K/Pg) and the auxiliary sections, an Ir anomaly is detected indicating the K/Pg boundary. This geochemical anomaly coincides also with mass extinctions of planktonic foraminifera species. The extinct species are in particular the large, complex tropical and subtropical taxa dwelling in subsurface and lower photic water. The mass extinctions at the Izeh section occurred over a succinct period of time similar to the K/Pg type section at El Kef (Tunisia). These sudden mass extinctions indicate a catastrophic pattern event occurring at the Maastrichtian/Danian boundary. In contrast the organic-walled dinocysts were less affected by the mass extinction and most species crossed the K/Pg boundary without showing mass and sudden extinctions. Nevertheless, they showed changes in their assemblages’ structure beyond the K/Pg boundary. Especially, Manumiella seelandica and M. druggii, typical species of Antarctic Maastrichtian dinocysts assemblages, occur in coeval deposits at the Izeh section; they persist through the Lower Danian and, like in Tunisia (e.g., El Kef section, Ellès section) show an obvious increase in relative abundance.  相似文献   

4.
Due to an impact of a bolide at the K/Pg boundary, the planktonic foraminifera have suffered sever mass extinction. However, no small Benthic Foraminifera species have documented mass extinction at the K/Pg boundary. Nevertheless, many species showed disturbance. The Maastrichtian assemblages may be different from those of the lower Paleogene by their species content, diversity and frequencies. At Oued Es Smara and Oued Abiod sections, the small benthic foraminifera indicate lower bathyal environment, and manifest significant faunal turnover. Until the uppermost Maastrichtian, their assemblages are highly diversified, with 77 species and 76 species respectively at Oued Es Smara and Oued Abiod sections. These are dominated by endobenthic morphotypes. At the K/Pg boundary, although 33 species (42,85%) (Oued Es Smara section) and 27 species (35,52%) (Oued Abiod section) of them seem to disappear, but only few species have really extinct such as Arenobulimina obesa. Nevertheless, the majority of species persist elsewhere at the Danian (e.g., Pseudoglandulina manifesta, Cibicioides proprius, Clavulinoides amorpha, Coryphostoma plaitum, Pullenia coryelli). At the lower Danian, the survivor Maastrichtian species are of 58% (Oued Es Smara) and 65% (Oued Abiod). Throughout the Parasubbotina pseudobulloides subzone, 4 others species were progressively disappeared. They are oligotrophic and low oxygen tolerant. About the Masstrichtian species, at the two studied sections (e.g. Gaudryina inflata and Tritaxia midwayensis) they seem to be more trophic exigent. Consequently, the benthic Foraminifera did not suffer massive extinction at the K/Pg boundary, but their assemblages underwent a significant faunal turnover which reflects important environmental changes. These changes are compatible with the catastrophic scenario induced by the large asteroid impact.  相似文献   

5.
The extinction and recovery of scleractinian corals at the Cretaceous-Tertiary (K-T) boundary was analyzed based on a global database of taxonomically revised late Campanian to Paleocene coral collections. In contrast to earlier statements, our results indicate that extinction rates of corals were only moderate in comparison to other marine invertebrates. We have calculated a 30% extinction rate for Maastrichtian coral genera occurring in more than one stratigraphic stage and more than one geographic region. Reverse rarefaction suggests that some 45% of all coral species became extinct. Photosymbiotic (zooxanthellate) corals were significantly more affected by the extinction than azooxanthellate corals; colonial forms were hit harder than solitary forms, and among colonial forms an elevated integration of corallites raised extinction risk. Abundance, as measured by the number of taxonomic occurrences, had apparently no influence on survivorship, but a wide geographic distribution significantly reduced extinction risk. As in bivalves and echinoids neither species richness within genera nor larval type had an effect on survivorship. An indistinct latitudinal gradient is visible in the extinction, but this is exclusively due to a higher proportion of extinction-resistant azooxanthellate corals in higher-latitude assemblages. No significant geographic hotspot could be recognized, neither in overall extinction rates nor in the extinction of endemic clades.More clades than previously recognized passed through the K-T boundary only to become extinct within the Danian. These failed survivors were apparently limited to regions outside the Americas. Recovery as defined by the proportional increase of newly evolved genera, was more rapid for zooxanthellate corals than previously assumed and less uniform geographically than the extinction. Although newly evolved Danian azooxanthellate genera were significantly more common than new zooxanthellate genera, the difference nearly disappeared by the late Paleocene suggesting a more rapid recovery of zooxanthellate corals in comparison to previous analyses. New Paleocene genera were apparently concentrated in low latitudes, suggesting that the tropics formed a source of evolutionary novelty in the recovery phase.  相似文献   

6.
Many studies on elasmobranchs, sharks and batoids (rays, skates and guitarfishes), have focused on the factors responsible for biomass decline, but little attention has been paid to the factors that affect species richness. We used the software package ModestR to determine the geographical distribution of all valid marine elasmobranch species (512 species of sharks and 619 species of batoids), thereby making it possible to determine the species composition of the elasmobranch community in any area worldwide. The primary aim of this study was to identify the factors associated with the species richness of elasmobranchs. The data were analyzed using multiple regressions and Support Vector Machine (SVM) in cells of 1º× 1º with the analyzed abiotic variables being bathymetry, chlorophyll a, sea surface temperature, photosynthetically available radiation, pH, cloud cover, the concentrations of calcite, silicate, phosphate and nitrate, salinity, particulate organic carbon, diffuse attenuation and dissolved oxygen. The mean area of occupancy of the species was used as an indicator of niche occupancy. The model performed with SVM explained 97 and 99 % of the variance observed in the species richness of batoids and sharks, respectively. Mean area of occupancy, temperature and bathymetry were the variables with a higher contribution to the variance observed in both sharks and batoids. The negative residuals of the model performed with SVM indicated areas with lower than predicted species richness. These may be potential areas with undiscovered and/or unregistered species, or areas with decreased species richness due to the negative effect of anthropogenic factors, i.e. overfishing  相似文献   

7.
The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.  相似文献   

8.
The chondrichthyan faunas from the Danish Maastrichtian chalk and the K/T boundary clay, the Fiskeler, are described for the first time. The rich and diverse fauna discovered in the late Maastrichtian chalk experienced a massive drop in diversity prior to the boundary. However, the fauna started to recover immediately after the deposition of the impact layer during earliest Danian times and had regained much of its diversity during the first few millennia after the bolide impact. Precision sampling has made it possible to document the recovery of the fauna, which did not suffer an extinction event of the same magnitude, as apparently observed in Morocco. At Stevns Klint, only 33 per cent of the chondrichthyan fauna became extinct compared with the 96 per cent in Morocco. The drop in diversity before the boundary is attributed to a sudden change in sea level. Among the sharks found in the chalk and Fiskeler are rare species such as Parasquatina and Echinorhinus and the first representative of Nebrius in Europe.  相似文献   

9.
Batoids (Chondrichthyes: Batoidea) are a diverse group of cartilaginous fishes which comprise a monophyletic sister lineage to all neoselachians or modern sharks. All species in this group possess anteroposteriorly expanded‐pectoral fins, giving them a unique disc‐like body form. Reliance on pectoral fins for propulsion ranges from minimal (sawfish) to almost complete dependence (skates and rays). A recent study on the diversity of planform pectoral fin shape in batoids compared overall patterns of morphological variation within the group. However, inconsistent pectoral homology prevented the study from accurately representing relationships within and among major batoid taxa. With previous work in mind, we undertook an independent investigation of pectoral form in batoids and evaluated the implications of shape diversity on locomotion and lifestyle, particularly in the skates (Rajoidei) and rays (Myliobatoidei). We used geometric morphometrics with sliding semilandmarks to analyze pectoral fin outlines and also calculate fin aspect ratios (AR), a functional trait linked to locomotion. In agreement with previous work, our results indicated that much of the evolution of batoid pectoral shape has occurred along a morphological axis that is closely related to AR. For species where kinematic data were available, both shape and AR were associated with swimming mode. This work further revealed novel patterns of shape variation among batoids, including strong bimodality of shape in rays, an intermediate location of skate species in the morphospace between benthic/demersal and pelagic rays, and approximately parallel shape trajectories in the benthic/demersal rays and skates. Finally, manipulation of landmarks verified the need for a consistent and accurate definition of homology for the outcome and efficacy of analyses of pectoral form and function in batoids. J. Morphol. 277:482–493, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Management and conservation actions in marine-protected areas require baselines for monitoring threatened marine fauna such as elasmobranchs. This article provides evidence of the occurrence of 34 species of elasmobranchs (21 sharks and 13 batoids) in the Malpelo Flora and Fauna Sanctuary, Colombia, including five new records of sharks and three of rays. From 1987 to 2021, new records were obtained by underwater visual census using SCUBA, manned submersibles and deep-ocean cameras to depths of up to 2211 m. Of the recorded species, 21 are considered as threatened taxa (64%) by the IUCN, making the Malpelo Flora and Fauna Sanctuary an essential conservation area for this highly threatened group of species.  相似文献   

11.
A high-resolution biostratigraphic analysis of planktic foraminifers confirms that the Bidart section at the eastern margin of the Atlantic Ocean exhibits a continuous and complete Cretaceous/Paleogene (K/Pg) transition interval. The biozones and subzones recorded in this section are less expanded than their equivalent in Tunisian sections: El Kef (Global Stratotype Section and Point: GSSP for the K/Pg boundary) and Ellès (auxiliary section), but they are sufficiently thick to allow a detailed analysis of the evolution of the planktic foraminiferal assemblages across the K/Pg transition.Throughout the uppermost 4 m Maastrichtian, the planktic foraminiferal assemblages are highly diversified, containing up to 72 species. These Maastrichtian assemblages are rich in cosmopolitan taxa (70%), dominated by small biserial morphotypes which belong mainly to the genus Heterohelix which coexist with less abundant but highly diverse tropical and subtropical species.The extinction pattern at the Bidart section suggests a sudden catastrophic mass extinction at the K/Pg boundary which affected at least 53 out of 72 species. The species becoming extinct include globotruncanids (e.g. Contusotruncana spp., Globotruncana spp., Globotruncanita spp.) and complex heterohelicids (e.g. Racemiguembelina spp., Pseudotextularia spp., Gublerina spp.). At the Bidart section, only Archaeoglobigerina cretacea disappears 2 m below the K/Pg boundary event. Specimens of 18 small and even tiny Maastrichtian species, are found at the lowermost Danian. Only a few of these species belonging to the genera of Guembelitria, Hedbergella and Heterohelix are considered to be real “Cretaceous survivor species”, whereas the specimens belonging to the rest, are most probably reworked, because they differ in their preservation.Throughout lowermost Danian, the planktic foraminiferal assemblages are dominated by “opportunistic” species of the genus Guembelitria. These opportunists are associated to small and poorly diversified pioneer globigerinids (Palaeoglobigerina spp. and Parvularugoglobigerina spp.). These assemblages became progressively more diversified across the early Danian containing species with cancellate walls (Eoglobigerina spp., Parasubbotina spp., Subbotina triloculinoides and Praemurica spp.) and new taxa of biserial heterohelicids (Woodringina spp. and Chiloguembelina spp.) suggesting a paleoenvironmental recovery.  相似文献   

12.
Klug, S. (2009). Monophyly, phylogeny and systematic position of the †Synechodontiformes (Chondrichthyes, Neoselachii). — Zoologica Scripta, 39 , 37–49.
Identifying the monophyly and systematic position of extinct sharks is one of the major challenges in reconstructing the phylogeny and evolutionary history of sharks in general. Although great progress has been accomplished in the last few decades with regard to resolving the interrelationships of living sharks, a comprehensive phylogeny identifying the systematic position of problematic or exclusively fossil taxa is still lacking. Fossil taxa traditionally assigned to synechodontiform sharks are very diverse with a fossil record extending back into the Palaeozoic but with uncertain inter- and intrarelationships. Here, phylogenetic analyses using robust cladistic principles are presented for the first time to evaluate the monophyly of this group, their intrarelationships and their systematic position within Neoselachii. According to the results of this study, taxa assigned to this group form a monophyletic clade, the †Synechodontiformes. This group is sister to all living sharks and displays a suite of neoselachian characters. Consequently, the concept of neoselachian systematics needs to be enlarged to include this completely extinct group, which is considered to represent stem-group neoselachians. The origin of modern sharks can be traced back into the Late Permian (250 Mya) based on the fossil record of †Synechodontiformes. The systematic position of batoids remains contradictory, which relates to the use of different data (molecular vs. morphological) in phylogentic analyses.  相似文献   

13.
Biotic effects of the Chicxulub impact, the K–T event and sea level change upon planktic foraminifera were evaluated in a new core and outcrops along the Brazos River, Texas, about 1000 km from the Chicxulub impact crater on Yucatan, Mexico. Sediment deposition occurred in a middle neritic environment that shallowed to inner neritic depths near the end of the Maastrichtian. The sea level fall scoured submarine channels, which were infilled by a sandstone complex with reworked Chicxulub impact spherules and clasts with spherules near the base. The original Chicxulub impact ejecta layer was discovered 45–60 cm below the sandstone complex, and predates the K–T mass extinction by about 300,000 years.Results show that the Chicxulub impact caused no species extinctions or any other significant biotic effects. The subsequent sea level fall to inner neritic depth resulted in the disappearance of all larger (> 150 μm) deeper dwelling species creating a pseudo-mass extinction and a survivor assemblage of small surface dwellers and low oxygen tolerant taxa. The K–T boundary and mass extinction was identified 40–80 cm above the sandstone complex where all but some heterohelicids, hedbergellids and the disaster opportunistic guembelitrids went extinct, coincident with the evolution of first Danian species and the global δ13C shift. These data reveal that sea level changes profoundly influenced marine assemblages in near shore environments, that the Chicxulub impact and K–T mass extinction are two separate and unrelated events, and that the biotic effects of this impact have been vastly overestimated.  相似文献   

14.
Sharks and their relatives (Elasmobranchii) are highly threatened with extinction due to various anthropogenic pressures. The abundant fossil record of fossil taxa has allowed the tracing of the evolutionary history of modern elasmobranchs to at least 250 MYA; nonetheless, exactly how far back the fossil record of living taxa goes has never been collectively surveyed. In this study, the authors assess the representation and extent of the fossil record of elasmobranchs currently living in our oceans by collecting their oldest records and quantifying first appearance dates at different taxonomic levels (i.e., orders, families, genera and species), ecological traits (e.g., body size, habitat and feeding mechanism) and extinction risks (i.e., threatened, not threatened and data deficient). The results of this study confirm the robust representation of higher taxonomic ranks, with all orders, most of the families and over half of the extant genera having a fossil record. Further, they reveal that 10% of the current global species diversity is represented in the geological past. Sharks are better represented and extend deeper in time than rays and skates. While the fossil record of extant genera (e.g., the six gill sharks, Hexanchus) goes as far back as c. 190 MYA, the fossil record of extant species (e.g., the sand shark, Carcharias taurus Rafinesque 1810) extends c. 66 MYA. Although no significant differences were found in the extent of the fossil record between ecological traits, it was found that the currently threatened species have a significantly older fossil record than the not threatened species. This study demonstrate that the fossil record of extant elasmobranchs extends deep into the geologic time, especially in the case of threatened sharks. As such, the elasmobranch geological history has great potential to advance the understanding of how species currently facing extinction have responded to different stressors in the past, thereby providing a deep-time perspective to conservation.  相似文献   

15.
Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively little phylogenetic attention. Our results suggest that the genus Echinorhinus is not a squaliform, but rather related to the saw sharks, a hypothesis that might be supported by both groups sharing 'spiny' snouts. In sum, our results offer the most detailed species-level phylogeny of sharks to date and a tool for comparative analyses.  相似文献   

16.
Viviparity: The Maternal-Fetal Relationship in Fishes   总被引:2,自引:1,他引:1  
SYNOPSIS. Viviparity in the vertebrate line first makes itsevolutionary appearance among fishes. It has independently evolvedin a number of divergent piscine lineages. The 54 families ofextant fishes that bear living young include 40 families ofchondrichthyans (sharks and rays), one montypic family of coelacanths(Latimeria), and 13 families of teleosts. There is fossil evidencefor viviparity in holocephalans and chondrosteans. Viviparitypredominates among sharks and rays (40 families, 99 genera,420 species) but is less widespread among teleosts (13 families,122 genera, 510 species). Following an historical introduction,the organization of the female reproductive system, sites ofgestation, developmental sequences and superfetation are considered.The evolution of viviparity establishes specialized maternal-fetalrelationships, viz., 1) developmental, 2) morphological, 3)trophic, 4) osmoregulatory, 5) respiratory, 6) endocrinological,and 7) immunological. While the latter four categories are brieflynoted the major emphasis is on the trophic relationship andits morphological and developmental basis. First, a generaloverview is presented and then the maternal-fetal trophic relationshipsin each of the major groups of fishes are systematically reviewed.Pertinent anatomical, histological, ultrastructural, developmental,physiological, and biochemical studies are considered. Viviparousfishes are either lecithotrophic, i.e., exclusively yolk dependent,or matrotrophic, i.e., in receipt of a continuous supply ofmaternal nutrients during gestation. Nutrient transfer is accomplishedby 1) oophagy and adelphophagy, 2) placental analogues, and3) the yolk sac placenta. Placental analogues include: externalepithelial absorptive surfaces, e.g., skin, fins, gills; trophonemata,modifications of the uterine epithelia for the secretion ofhistotrophe or "uterine milk"; branchial placentae, close appositionbetween gill epithelia and either uterine or ovarian epithelialvilli; the yolk sac; pericardial amnion and chorion; follicularpseudoplacenta, close apposition between follicle cells andembryonic absorptive epithelia; hypertrophied gut; and trophotaeniae,external rosette or ribbon-like projections of the embryonicgut. Among chondrichthyans, the yolk sac placenta (840–1,050%),trophonematal secretion and embryonic absorbtion of histotrophe(1,680–4,900%) and oophagy and adelphophagy (1.2 x 106%)are the most efficient methods of nutrient transfer. Among teleosts,the follicular pseudoplacenta (1,800–3,900%), trophotaeniae(8,400%) and absorption of ovarian histotrophe through surfaceepithelia and a hypertrophied gut (1,100–34,000%) arethe most efficient. These values stand in contrast to the 30%40%loss of dry weight characteristic of oviparous fishes and viviparouslecithotrophes.  相似文献   

17.
Phyletic Relationships of Living Sharks and Rays   总被引:3,自引:1,他引:2  
A set of hypotheses are developed for the origin of living sharksand rays and the interrelationships of their major groups, usingsome methods of cladistic analysis to relate groups with sharedderived characters. Comparative studies on living sharks andrays combined with new data on fossil sharks suggests that theliving groups ultimately stem from a common ancestral groupof "neoselachian" sharks with many modern characters. Reinterpretationsof "amphistyly" in modern sharks is presented on new data.  相似文献   

18.
Early morphological studies regarding the evolutionary history of elasmobranchs suggested sharks and batoids (skates and rays) were respectively monophyletic. More modern morphological cladistic studies, however, have tended to suggest that batoids are derived sharks, closely related to sawsharks and angelsharks, a phylogenetic arrangement known as the Hypnosqualea hypothesis. Very few molecular studies addressing interordinal relationships of elasmobranchs have been published; the few that do exist, are very limited in terms of both taxon representation and/or aligned sequence positions, and are insufficient to answer the question of whether batoids are derived sharks. The purpose of this study was to address this issue with more complete taxon representation, concomitant with a reasonable number of aligned sequence positions. The data set included a 2.4-kb segment of the mitochondrial 12S rRNA-tRNA valine-16S rRNA locus, and in terms of taxa, representatives of two orders of Batoidea, at least one representative of all orders of sharks, and as an outgroup, the widely recognized sister group to elasmobranchs-Holocephali. The results provide the first convincing molecular evidence for shark monophyly and the rejection of the Hypnosqualea hypothesis. Our phylogenetic placement of batoids as a basal elasmobranch lineage means that much of the current thinking regarding the evolution of morphological and life history characteristics in elasmobranchs needs to be re-evaluated.  相似文献   

19.
DNA barcoding Australia's fish species   总被引:25,自引:0,他引:25  
Two hundred and seven species of fish, mostly Australian marine fish, were sequenced (barcoded) for a 655 bp region of the mitochondrial cytochrome oxidase subunit I gene (cox1). Most species were represented by multiple specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively. All species could be differentiated by their cox1 sequence, although single individuals of each of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to develop species identification systems, some phylogenetic signal was apparent in the data. In the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids, rays, sharks and teleosts. Species within genera invariably clustered, and generally so did genera within families. Three taxonomic groups-dogfishes of the genus Squalus, flatheads of the family Platycephalidae, and tunas of the genus Thunnus-were examined more closely. The clades revealed after bootstrapping generally corresponded well with expectations. Individuals from operational taxonomic units designated as Squalus species B through F formed individual clades, supporting morphological evidence for each of these being separate species. We conclude that cox1 sequencing, or 'barcoding', can be used to identify fish species.  相似文献   

20.
During their colonization by Polynesians and later by Europeans, the Hawaiian islands suffered a massive loss of species. All the extinctions are indirectly attributable to human impact. Nonetheless, it has proved extremely difficult to specify which of several possible mechanisms caused each particular extinction. This seems to admit defeat in the battle to understand past extinctions. Such understanding could guide our efforts to protect species that are now threatened with extinction. Will it be easier to understand the causes of future extinctions? Surveys of future extinctions stress habitat destruction as the simple and dominant mechanism. This contrasts to its secondary (and generally confused) role in past extinctions. I argue that this contrast between the complexity of the past and the apparent simplicity of the future arises because extinction mechanisms are inherently synergistic. Once extensive species losses begin, it may be impossible to separate the mechanisms and thus manage an individual species as if its decline had a single cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号