首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.  相似文献   

2.
The extinction and recovery of scleractinian corals at the Cretaceous-Tertiary (K-T) boundary was analyzed based on a global database of taxonomically revised late Campanian to Paleocene coral collections. In contrast to earlier statements, our results indicate that extinction rates of corals were only moderate in comparison to other marine invertebrates. We have calculated a 30% extinction rate for Maastrichtian coral genera occurring in more than one stratigraphic stage and more than one geographic region. Reverse rarefaction suggests that some 45% of all coral species became extinct. Photosymbiotic (zooxanthellate) corals were significantly more affected by the extinction than azooxanthellate corals; colonial forms were hit harder than solitary forms, and among colonial forms an elevated integration of corallites raised extinction risk. Abundance, as measured by the number of taxonomic occurrences, had apparently no influence on survivorship, but a wide geographic distribution significantly reduced extinction risk. As in bivalves and echinoids neither species richness within genera nor larval type had an effect on survivorship. An indistinct latitudinal gradient is visible in the extinction, but this is exclusively due to a higher proportion of extinction-resistant azooxanthellate corals in higher-latitude assemblages. No significant geographic hotspot could be recognized, neither in overall extinction rates nor in the extinction of endemic clades.More clades than previously recognized passed through the K-T boundary only to become extinct within the Danian. These failed survivors were apparently limited to regions outside the Americas. Recovery as defined by the proportional increase of newly evolved genera, was more rapid for zooxanthellate corals than previously assumed and less uniform geographically than the extinction. Although newly evolved Danian azooxanthellate genera were significantly more common than new zooxanthellate genera, the difference nearly disappeared by the late Paleocene suggesting a more rapid recovery of zooxanthellate corals in comparison to previous analyses. New Paleocene genera were apparently concentrated in low latitudes, suggesting that the tropics formed a source of evolutionary novelty in the recovery phase.  相似文献   

3.
The study of the global mass extinction event at the Cretaceous–Palaeogene (K/Pg) boundary can aid in understanding patterns of selective extinction, and survival and dynamics of ecosystem recovery. Outcrops in the Maastrichtian type area (south-east Netherlands, north-east Belgium) comprise a stratigraphically expanded K/Pg boundary succession that offers a unique opportunity to study marine ecosystem recovery within the first few thousand years following the mass extinction event. A quantitative analysis was performed on systematically sampled macrofossils of the topmost Maastrichtian and lowermost Danian strata at the former Ankerpoort-Curfs quarry (Geulhem), which represent ‘snapshots’ of the latest Cretaceous and earliest Palaeogene marine ecosystems, respectively. Molluscs in particular are diverse and abundant in the studied succession. Regional ecosystem changes across the K/Pg boundary are relatively minor, showing a decline in suspension feeders, accompanied by an ecological shift to endobenthic molluscs. The earliest Paleocene gastropod assemblage retains many ‘Maastrichtian’ features and documents a fauna that temporarily survived into the Danian. The shallow, oligotrophic carbonate platform in this area was inhabited by taxa that were adapted to low nutrient levels and resistant to starvation. As a result, the local taxa were less affected by the short-lived detrimental conditions related to K/Pg boundary perturbations, such as darkness, cooling, starvation and ocean acidification. This resulted in relatively high survival rates, which enabled rapid recolonization and recovery of marine faunas in the Maastrichtian type area.  相似文献   

4.
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.  相似文献   

5.
Species ranges and relative abundances of dominant planktonic foraminifers of eight late Eocene to early Oligocene deep-sea sections are discussed to determine the nature and magnitude of extinctions and to investigate a possible cause-effect relationship between impact events and mass extinctions.Late Eocene extinctions are neither catastrophic nor mass extinctions, but occur stepwise over a period of about 1–2 million years. Four stepwise extinctions are identified at the middle/late Eocene boundary, the upperGlobigerapsis semiinvoluta zone, theG. semiinvoluta/Globorotalia cerroazulensis zone boundary and at the Eocene/Oligocene boundary. Each stepwise extinction event represents a time of accelerated faunal turnover characterized by generally less than 15% species extinct and in itself is not a significant extinction event. Relative species abundance changes at each stepwise extinction event, however, indicate a turnover involving > 60% of the population implying major environmental changes.There microtektite horizons are present in late Eocene sediments; one in the upperG. semiinvoluta zone (38.2 Ma) and two closely spaced layers only a few thousand years apart in the lower part of theGloborotalia cerroazulensis zone (37.2 Ma). Each of the three impact events appears to have had some effect on microplankton communities. However, the overriding factor that led to the stepwise mass extinctions may have been the result of multiple causes as there is no evidence of impacts associated with the step preceding, or the step following the deposition of the presently known microtektite horizons.  相似文献   

6.

The Paleocene Adrar Mgorn local fauna recently discovered in the Ouarzazate basin (Morocco) along with several significant Eocene North African faunas, has yielded the oldest known placental mammals of Africa. Contrary to those from the Eocene which are basically endemic, the Adrar Mgorn placentals display affinities with taxa from North‐Tethyan continents and indicate active faunal interchanges between Africa and Europe (and perhaps Asia) during the Cretaceous/Paleogene times. On biogeographical grounds, two dispersal events are suggested as a working hypothesis. The oldest one, exemplified by the presence of paleoryctid and adapisoriculid “insectivores”; in the Moroccan locality, possibly took place by the K/T boundary. The second dispersal event exemplified by the discovery of an omomyid primate and possible hyaenodontid creodonts may have been contemporaneous with the Paleocene/Eocene boundary during which a marine regression is also known.  相似文献   

7.
Abstract:  Climate warming at the Palaeocene/Eocene boundary ( c . 55.8 Ma) had significant permanent affects on paratropical and warm-adapted vegetation types. Pollen and spore records which document vegetation turnover from the eastern US Gulf Coast have all been taken from sediments of marginal marine depositional environments. Pollen and spores (sporomorphs) are preserved excellently in these marginal marine depositional environments but these assemblages contain grains transported from many different vegetation types and over huge geographic distances. Currently it is unclear whether the turnover from important paratropical areas like the US Gulf Coast is a reflection on actual vegetation change in the local region or from source areas far away in the continental interior. Sporomorph data from 20 former swamps (lignites) from the Nanafalia, Tuscahoma and Hatchetigbee formations in Mississippi and Alabama, USA, are used to test the fidelity of the marine sporomorph record across the Palaeocene–Eocene transition. Data show that extinction is noted in the swamp record (≥7 per cent of Palaeocene taxa) and that swamps were susceptible to immigration in the Early Eocene with the first occurrences of Brosipollis spp. (Burseraceae), Dicolpopollis spp. (Palmae), Nuxpollenites psilatus (Loranthaceae) and Platycarya spp. (Juglandaceae). Swamps have higher within-sample diversity in the Eocene but higher among-sample diversity in latest Palaeocene–earliest Eocene samples, which parallels exactly diversity trends estimated from marine sporomorph assemblages. Palms also increase in abundance in the Eocene. The swamp data demonstrate that the flora growing in these ancient paratropical forests was diverse ( c. 120 taxonomic groups) but incorporated an unusual admixture of plants with modern tropical affinities together with those that now live in modern temperate to subtropical North America.  相似文献   

8.
The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions ( approximately 70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes.  相似文献   

9.
Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non‐marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian‐margin strata of the northern Tethys Himalaya and Asian‐margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure formations. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palaeogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depression. They comprise mostly neritic and coastal lagoon facies of the Tethyan realm. Palaeontological evidence suggests that the Paleocene/Eocene boundary here is in middle of the Qimugen Formation. The Tarim Basin was largely drained by Late Oligocene. To the east, the marine offshore Palaeogene strata are widespread in the North Taiwan and East Zhejiang depressions of the continental shelf basin of East China Sea. Abundant fossils including foraminifera, calcareous nannofossils, ostracods, pollen and bivalves occur in the marine environment. Biostratigraphically, the sequence is well correlated with the international planktonic foraminiferal and nannofossil zonations.  相似文献   

10.
The Late Paleocene Salt Mountain Limestone from southwestern Alabama is a coral-algal-sponge buildup which further characterizes the faunal makeup of early post-Cretaceous reefs. Thin sectioning has disclosed a variety of lithologies, including large foram-algal packstone, algal bindstone, and sponge bafflestone. A low-diversity fauna of massive scleractinian corals caps the sequence, but may be developed intermittently throughout the section as well. The constructional importance of coralline algae and the low diversity of scleractinian corals are characteristic of Paleocene reefs in general. Sponges, however, are virtually unknown in earliest Tertiary sediments. Their abundance in the Salt Mountain demonstrates not only their local contribution to Early Tertiary reefs, but may also reflect an opportunistic response of sponges as reef constructors following the extinction of oligotrophic, rudist-coral reef communities of the Late Cretaceous. □ Paleocene, reef, paleoecology, sponges, extinction.  相似文献   

11.
Detailed analyses of the benthic foraminiferal assemblages extracted with the cold acetolyse method together with high resolution geochemical and mineralogical investigations across the Paleocene/Eocene (P/E) boundary of the classical succession at Contessa Road (western Tethys), allowed to recognize and document the Paleocene–Eocene Thermal Maximum (PETM) interval, the position of the Benthic Extinction Event (BEE) and the early recovery of benthic faunas in the aftermath of benthic foraminiferal extinction. The stratigraphical interval spanning the P/E boundary consists of dominantly pelagic limestones and two prominent marly beds. Benthic foraminifera indicate that these sediments were deposited at lower bathyal depth, not deeper than 1000–1500 m. The Carbon Isotope Excursion (CIE) interval is characterized by high barite abundance with a peak at the base of the same stratigraphic interval, indicating a complete, although condensed record of the early CIE. A succession of events and changes in the taxonomic structure of benthic foraminifera has been recognized that may be of use for supra-regional stratigraphic correlation across the P/E boundary interval. The composition of the benthic foraminiferal assemblages, dominated by infaunal taxa, indicates mesotrophic and changing conditions on the sea floor during the last  45 kyr of the Paleocene. The BEE occurs at the base of the CIE within the lower marly bed and it is recorded by the extinction of several deep-water cosmopolitan taxa. Then, the lysocline/CCD rose and severe carbonate dissolution occurred. Preservation deteriorated, the faunal density and simple diversity dropped to minimum values and a peak of Glomospira spp. has been observed. Stress-tolerant and opportunistic groups, represented mainly by bi-and triserial taxa, dominate the low-diversity post-extinction assemblages, indicating a benthic foraminiferal recovery under environmental unstable conditions, probably within a context of sustained food transfer to the bottom. A three-phase pattern of faunal recovery is recognizable. At first the lysocline/CCD started to descend and then recovered. Small-sized “Bulimina”, Oridorsalis umbonatus, and Tappanina selmensis rapidly repopulated the severely stressed environment. Later on, Siphogenerinoides brevispinosa massively returns, dominating the assemblage together with other buliminids, Nuttallides truempyi, and Anomalinoides sp.1. Finally, a marked drop in abundance of S. brevispinosa is followed by a bloom of the opportunistic and recolonizer agglutinated Pseudobolivina that, for the first time, is recorded within the main CIE. A second interval of dissolution, but less severe than the previous one, has been recognized within the upper marly bed (uppermost part of the main CIE interval) and it is interpreted as a renewed, less pronounced shoaling of the lysocline/CCD that interrupted the recovery of benthic faunas. This further rise likely represents a response to persistent instability of ocean geochemistry in this sector of the Tethys before the end of the CIE. In the CIE recovery and post CIE intervals, the composition of the benthic foraminiferal assemblages suggests mesotrophic and unstable conditions at the sea floor. According to the geochemical proxy for redox conditions, the deposition of the PETM sediments at Contessa Road occurred in well-oxygenated waters, leading out a widespread oxygen depletion as major cause of the BEE. Changing oceanic productivity, carbonate corrosivity and global warming appear to have played a much more important role in the major benthic foraminiferal extinction at the P/E boundary.  相似文献   

12.
The fossil record is our only direct means for evaluating shifts in biodiversity through Earth''s history. However, analyses of fossil marine invertebrates have demonstrated that geological megabiases profoundly influence fossil preservation and discovery, obscuring true diversity signals. Comparable studies of vertebrate palaeodiversity patterns remain in their infancy. A new species-level dataset of Mesozoic marine tetrapod occurrences was compared with a proxy for temporal variation in the volume and facies diversity of fossiliferous rock (number of marine fossiliferous formations: FMF). A strong correlation between taxic diversity and FMF is present during the Cretaceous. Weak or no correlation of Jurassic data suggests a qualitatively different sampling regime resulting from five apparent peaks in Triassic–Jurassic diversity. These correspond to a small number of European formations that have been the subject of intensive collecting, and represent ‘Lagerstätten effects’. Consideration of sampling biases allows re-evaluation of proposed mass extinction events. Marine tetrapod diversity declined during the Carnian or Norian. However, the proposed end-Triassic extinction event cannot be recognized with confidence. Some evidence supports an extinction event near the Jurassic/Cretaceous boundary, but the proposed end-Cenomanian extinction is probably an artefact of poor sampling. Marine tetrapod diversity underwent a long-term decline prior to the Cretaceous–Palaeogene extinction.  相似文献   

13.
A subrosion pipe or sinkhole is a geologic phenomenon that occurs due to dissolution of strata in the subsurface causing the overlying sediments to collapse. The subrosion pipe in the Winterswijk quarry complex in the eastern Netherlands yielded rare, dark-colored shales. Bivalves and palynomorphs indicate that the shales were deposited during the Rhaetian (uppermost Triassic). In addition, detailed correlation with other NW European localities in Great Britain, Austria, and Germany further constrained the age of the shales to the middle of the Rhaetian. The shales were deposited in a near-coastal environment and contained a low diverse macroinvertebrate fauna with bivalves and some brittle stars that lived in a hostile environment, probably caused by low salinity and oxygen levels. These middle Rhaetian shales were mixed with dark-colored middle to late Hettangian sediments, both overlying Middle Triassic (Anisian) strata, which is present in the pipe as well. The presence of Rhaetian sediments in the subrosion pipe reopened the discussion on its age of formation. We suggest that a collapse in the Middle Eocene is most likely. This research expands the knowledge of the marine realms in the uppermost Triassic in Europe, just prior to the Permian–Triassic extinction event.  相似文献   

14.
Three molluscan assemblages from the Badenian (Miocene) marine sandy facies of Poland are described in terms of their taxonomic composition, diversity, and trophic structure. The structural variation between the molluscan assemblages seems to be largely controlled by a gradient in water energy which in turn results in gradients in substrate mobility and organic content of bottom sediments. Together with a subordinate factor of local sedimentation rate, these gradients control the distribution of lucinoid mucus tube feeders vs. deep burrowing siphonate suspension feeders, of browsers, and of deposit feeders vs. suspension feeders. Some structural features of the molluscan assemblages are regarded as related to biotic factors. The graphs of cumulative species frequencies vs. the logarithm of cumulative individual frequencies are used as a measure of community organization. These graphs indicate distinct differences in ecological maturity between the molluscan assemblages. On this basis, two different stages of ecological succession in an offshore sandy bottom environment are recognized. The evidence from the comparison of the Miocene molluscan assemblages with their recent counterparts may support the view that the evolutionary stability of species populations of a given community, and long-term stability of the community structure are independent. High environmental variability and stress seem to be correlated with evolutionary stability of species populations rather than with long-term permanence of community structure.  相似文献   

15.
Ostracode faunas obtained from nine sections spanning the Paleocene-Early Eocene interval from a platform-basin transect in the Southern Galala Plateau area (Eastern Desert, Egypt) have been investigated. The study focuses on taxonomy and biostratigraphy of the ostracode assemblages across the P/E boundary, with supporting comments on paleoecology and paleobiogeography. The studied nine sections yielded 60 taxa belonging to 39 genera. Five species are new. The P/E transition is characterized by the appearance of new taxa rather than extinctions. During the Early and early Late Paleocene, the ostracode assemblages throughout the study area are largely similar, being dominated by middle-outer neritic taxa. In the late Late Paleocene and Early Eocene, changes in the paleobathymetry from deeper marine environments in the distal area in the south to shallower marine environments in the proximal area in the north become pronounced. Many of the recorded taxa have a wide geographic distribution throughout the Middle East and North Africa. Similarities with basins of West Africa are also found, reflecting faunal exchanges between this area and southern Tethys during the Paleocene and Early Eocene.  相似文献   

16.
It is often assumed that mass extinctions may be read directly from the fossil record. However, recent work on the Cretaceous-Tertiary (K-T) boundary has shown the difficulty of doing this. For example, it is hard to tell whether the stratigraphic ranges of taxa are complete or not, and what the shape of an extinction really is. Range completeness may be assessed by (1) a statistical approach to the relative completeness of ranges of taxa, and (2) tests based on collecting effort near the ends of ranges. Tests carried out recently suggest that the record is good in parts and getting better. Hence, palaeontologists ought to be able to document the nature of extinction events ever more precisely.  相似文献   

17.
The largest Paleozoic extinctions of articulate brachiopods occurred at the Frasnian—Famennian boundary in the Late Devonian and at the Permian—Triassic boundary. Both extinctions affected taxa of all levels, including orders, but differed in scale, course, and ecological and evolutionary consequences. The Frasnian—Famennian extinction event was selective and evolutionary activity after the crisis varied in different orders. However, in the Early Carboniferous, the brachiopod diversity was mostly restored in comparison with the Devonian maximum. In particular groups, preadaptation played a role in changes in diversity and reconstruction of communities. The brachiopod composition at this boundary changed sharply. The extinction event at the end of Permian was global and accompanied by changes in the biota. Later, in the Meso-Cenozoic, the brachiopod diversity was not restored, and bivalves acquired primary importance in various bottom communities of different sea zones where Paleozoic brachiopods previously dominated. Extinction of brachiopods at this boundary was long and gradual. The symptoms of the ecological crisis in the development of Permian brachiopods are recognized beginning from the Roadian Age, which was probably the onset of this crisis.  相似文献   

18.
The Mesozoic chrysopid-like Planipennia are revised and several new genera and species are described. The new superfamily Chrysopoidea is proposed for the extant and fossil Chrysopidae, and the fossil families Liassochrysidae n. fam., Allopteridae Zhang 1991 n. sensu, Mesochrysopidae Handlirsch, 1906 n. sensu, Tachinymphidae n. fam., and Limaiidae Martins-Neto and Vulcano 1989 n. sensu. A phylogenetic analysis of the Chrysopoidea is proposed, based on the wing venation characters. With at least the four families Allopteridae, Mesochrysopidae, Tachinymphidae, and Chrysopidae, showing different wing venation patterns, the systematic diversity and morphological disparity of the Chrysopoidea are maximal during the Late Jurassic and Early Cretaceous. The Mesozoic family Limaiidae was still present during the Paleocene/Eocene suggesting a minimal impact on the Chrysopoidea of the crisis of the diversity at the K-T boundary. Other Cenozoic Chrysopoidea can be attributed to the Chrysopidae sensu stricto.  相似文献   

19.
According to the classical stratigraphical conceptions, the Belgian Heersian was classified in the Landenian, and assigned to the basal Lower Eocene. It is composed of marine Sands of Orp-le-Grand, which contain a riche selacian fauna, also of Gelinden Marls covering and interpenetrating the Sands.Among the vertebrate remains recently discovered at Maret en Brabant in the marl facieswithin the Sands was a small tooth which represents the first mammalian remain from the Heersian, and attests the occurence of the insectivorous genus Adapisorex, hitherto known from the paleocene localities of Cernay-les-Reims and Walbeck. The specimen from Maret en Brabant reopens the question of the age of the Belgian Heersian and supports its classification within the Paleocene, according to paleobotanical data and indications obtained from the selacian fauna.  相似文献   

20.
Foraminiferal and clay mineral records were studied in the upper Paleocene to lower Eocene Dababiya section (Egypt). This section hosts the GSSP for the Paleocene/Eocene boundary and as such provides an expanded and relatively continuous record across the Paleocene/Eocene Thermal Maximum (PETM). Deposition of illite–smectite clay minerals is interpreted as a result of warm and arid conditions in the southern Tethys during the latest Paleocene. Benthic foraminiferal assemblages are indicative of seasonal variation of oxygen and food levels at the seafloor. A sea-level fall occurred in the latest Paleocene, followed by a rise in the earliest Eocene. Foraminiferal diversity and densities decreased strongly at the P/E boundary, coinciding with the level of global extinction of benthic foraminifera (BEE) and start of the Carbon Isotope Excursion (CIE) and PETM. In the lower CIE, the seafloor of the stratified basin remained (nearly) permanently anoxic and azoic. A sudden increase in mixed clay minerals (kaolinite and others) suggests that warm and perennial humid conditions prevailed on the continent. High levels of TOC and phosphathic concretions in the middle CIE are evidence for increased organic fluxes to the sea floor, related to upwelling and to augmented continental runoff. Low densities of opportunistic taxa appeared, indicating occasional ephemeral oxygenation and repopulation of the benthic environment. The planktic community diversified, although conditions remained poor for deep-dwelling taxa. An increase in illite–smectite dominated clay association is considered to mark the return of a seasonal signature on climatic conditions. During the late CIE environmental conditions changed to seasonally fluctuating mesotrophic conditions and diverse and rich benthic and planktic foraminiferal communities developed. Post-CIE planktic faunas consisted of both deep and shallow-dwelling taxa and buliminid-dominated benthic assemblages reflect fluctuating mesotrophic conditions.The frequent environmental perturbations during the CIE/PETM at Dababiya provided a rather specialized group of foraminiferal taxa (i.e., Anomalinoides aegyptiacus) the opportunity to repopulate, survive and subsequently dominate by a hypothesized capacity to switch to an alternative life strategy (population dynamics, habitat shift) or different metabolic pathway. The faunal record of Dababiya provides insight into the cause and development of the BEE: various severe global changes during the PETM (e.g., ocean circulation, CaCO3-dissolution, productivity and temperature changes) disturbed a wide range of environments on a geologically brief timescale, explaining together the geographically and temporally variable character of the BEE. This allowed a number of specific but different foraminiferal assemblages composed of stress-tolerant and opportunistic taxa to be successful during and after the periods of environmental perturbations associated with the PETM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号