首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The chilling tolerance of cucumber seedling radicles was influenced by their relative levels of vigour. Radicles of high‐vigour seedlings grew to 20 mm in length in 36 h at 25 °C, whereas it took 60 h for low‐vigour seedling radicles to reach that length. Chilling at 2·5 °C for 48 h inhibited the subsequent growth of high‐ and low‐vigour seedlings by 39 and 68%, respectively. The 2,3,5‐triphenyltetrazolium chloride (TTC) viability index, and α,α‐diphenyl‐β‐picrylhydrazyl (DPPH)‐radical scavenging activity were higher in high than low‐vigour radicles. Higher ascorbate peroxidase (APX) and catalase (CAT) enzyme activity, DPPH‐radical scavenging activity, and recovery of CAT activity after chilling in high‐vigour radicles corresponded with their higher level of chilling tolerance in comparison with low‐vigour radicles. In contrast, elevated levels of superoxide dismutase, glutathione reductase and guaiacol peroxidase appear to be correlated with chilling injury since they only showed substantial increases in activity in the more chilling‐­sensitive low‐vigour radicles after chilling. Manipulation of APX, CAT, and/or DPPH activity could produce plants with superior and persistent chilling tolerance.  相似文献   

2.
Heat shock increases chilling tolerance of mung bean hypocotyl tissue   总被引:5,自引:0,他引:5  
The effects of heat shock on the chilling tolerance of mung bean [Vigna radiata (L.) Wilczek] seedling tissue were studied by using two measurements of chilling injury: increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity and solute leakage. ACC oxidase activity (measured as ACC-induced ethylene production) of freshly excised mung bean hypocotyl segments was highly dependent on the temperature at which the seedlings were grown. However, this highly temperature-dependent level of ACC oxidase activity was probably a wound response since it was almost entirely eliminated by incubating the excised segments at 20°C for 3 h. In contrast, heating of excised segments to 40°C for up to 4 h resulted in a time-dependent increase in ACC oxidase activity which was sensitive to cycloheximide, indicating rapid protein synthesis during the heat treatment. ACC oxidase activity fell sharply during subsequent chilling at 2. 5°C. After 3 days of chilling, all treated segments, regardless of their initial ACC oxidase activity, showed a decline to the same low activity level and ACC oxidase activity continued to fall slowly for up to 9 days at 2. 5°C. Hypocotyl segments excised from seedlings held at 15°C showed no change in solute leakage, but leakage increased rapidly when seedlings were either chilled at 2. 5°C or heated to 32°C (just below the heat shock temperature). Chill-induced leakage from non-heat-shocked segments increased steadily with chilling duration and was unaffected by cycloheximide concentration up to day 6. Within the elevated rate of leakage on day 9, however, leakage was lower from segments exposed to 10 and 50 μM cycloheximide. Solute leakage was markedly reduced for up to 9 days when segments were heat shocked at 40°C for 3 or 4 h with or without 10 M cycloheximide, but the presence of 50 μM cycloheximide caused an initial doubling of solute leakage and a 3-fold increase after 3 days of chilling. Cycloheximide prevented formation of heat shock protection against chilling from the start at 50 μM and after 9 days at 10 μM. These results indicate that the protection afforded by heat shock against chilling damage is quantitative and probably involves protein synthesis.  相似文献   

3.
Electrical resistance changes in different organs of four olive tree (Olea europaea L.) varieties, characterized by different tolerance to chilling and freezing, were examined, during exposure to low temperature. Apparent critical temperatures (CT) and freezing temperatures (Tfr) were identified on the basis of the electrical resistance changes. Both temperatures were lower for the more chilling‐tolerant genotypes. From the apparent critical temperatures, the absolute critical temperature (CTabs) and the time delay of the chilling signal transduction process were calculated. In shoots, CTabs varied from 8·8 °C for Ascolana (chilling‐tolerant variety) to 13·6 °C for Coratina (chilling‐sensitive variety). The magnitude of the transduction time was very similar (about 2 min) for the three genotypes that are more sensitive to chilling, whereas it was significantly higher (about 3 min) for the most tolerant genotype. Different freezing temperatures were observed for different organs. It would appear from this experiment that the order of sensitivity is roots > leaves > shoots > vegetative buds. Accord was found between the absolute critical temperature of electrical resistance and the critical temperature of membrane potential. The occurrence of electrical resistance changes in the tissues of the olive trees exposed to low temperature suggests the use of this experimental procedure as a quick, easy and non‐destructive tool to screen plant tissues for chilling tolerance. The strong dependence of the electrical resistance on low temperature, and the critical temperature of around 10 °C, can yield interesting information about the lowest thermal limits for the continuation of normal physiological processes and therefore about the adaptability of plants to particular environments.  相似文献   

4.
Abstract The leaves of olive are long lived and likely to experience both chilling and high temperature stress during their life. Changes in photosynthetic CO2 assimilation resulting from chilling and high temperature stress, in both dim and high light, are investigated. The quantum yield (φ) of photosynthesis at limiting light levels was reduced following chilling (at 5°C for 12 h), in dim light by approximately 10%, and in high light by 75%; the difference being attributed to photoinhibition. Similar reductions were observed in the light-saturated rate of CO2 uptake (Amax). Decrease in Amax correlated with a halving of the leaf internal CO2 concentration (ci), suggesting an increased limitation by stomata following photoinhibition. Leaves were apparently more susceptible to photoinhibitory damage if the whole plant, rather than the leaf alone, was chilled. On return to 26 °C, I he photosynthetic capacity recovered to pre-stress levels within a few hours if leaves had been chilled in high light for 8 h or less, but did not fully recover from longer periods of chilling when loss of chlorophyll occurred. Leaves which were recovering from chilling in high light showed far more damage on being chilled a second time in high light. Three hours in high light at 38 °C reduced φ by 80%, but φ recovered within 4h of return to 26 °C. Although leaves of Olive are apparently less susceptible to photoinhibitory damage during chilling stress than the short-lived leaves of chilling-sensitive annual? crops, the results nevertheless show that photoinhibition during temperature stress is potentially a major factor influencing the photosynthetic productivity of Olive in the field.  相似文献   

5.
Prior temperature exposure affects subsequent chilling sensitivity   总被引:5,自引:0,他引:5  
The chilling sensitivity of small discs or segments of tissue excised from chillingsensitive species was significantly altered by prior temperature exposure subsequent to holding the tissue at chilling temperatures as measured by a number of physiological processes sensitive to chilling. This temperature conditioning was reversible by an additional temperature exposure before chilling, and mature-green and red-ripe tomato tissue exhibit similar chilling sensitivities. Exposing pericarp discs excised from tomato fruit (Lycopersicon esculentum Mill. cv. Castelmart), a chilling-sensitive species, to temperatures from 0 to 37°C for 6 h before chilling the discs at 2.5°C for 4 days significantly altered the rate of ion leakage from the discs, but had no effect on the rate of ion leakage before chilling and only a minimal effect on discs held at a non-chilling temperature of 12°C. Exposing chillingsensitive tissue to temperatures below that required to induce heat-shock proteins but above 20°C significantly increased chilling sensitivity as compared to tissue exposed to temperatures between 10 and 20°C. Rates of ion leakage after 4 days of chilling at 2.5°C were higher from fruit and vegetative tissue of chilling-sensitive species (Cucumis sativus L. cv. Poinsett 76, and Cucurbita pepo L. cv. Young Beauty) that were previously exposed for 6 h to 32°C than from similar tissue exposed to 12°C. Exposure to 32 and 12°C had no effect on the rate of ion leakage from fruit tissue of chilling tolerant species (Malus domestica Borkh. cv. Golden Delicious, Pyrus communis L. cv. Bartlett). Ethylene and CO2 production were higher and lycopene synthesis was lower in chilled tomato pericarp discs that were previously exposed for 6 h to 32°C than the values from tissue exposed to 12°C for 6 h before chilling. Increased chilling sensitivity induced by a 6 h exposure to 32°C could be reversed by subsequent exposure to 12°C for 6 h.  相似文献   

6.
We have investigated whether or not ATP or other nucleoside di- and trisphosphates (including some nonhydrolysable ATP analogues) can stimulate the activity and/or the processivity of DNA polymerase α associated with the nuclear matrix obtained from HeLa S3 cell nuclei that had been stabilized at 37°C prior to subfractionation, as has been reported previously for DNA polymerase α bound to the nuclear matrix prepared from 22-h regenerating rat liver. We have found that HeLa cell matrix-associated DNA polymerase α activity could not be stimulated at all by ATP or other nucleotides, a behaviour which was shared also by DNA polymerase α activity that solubilizes from cells during the isolation of nuclei and that is thought to be a form of the enzyme not actively engaged in DNA replication. Moreover, the processivity of matrix-bound DNA polymerase α activity was low (< 10 nucleotides). These results were obtained with the matrix prepared with either 2M NaCl or 0·25 M (NH4)2SO4 and led us to consider that a 37° incubation of isolated nuclei renders resistant to high-salt extraction a form of DNA polymerase α which is unlikely to be involved in DNA replication in vivo.  相似文献   

7.
We investigated chilling-induced changes in ethylene levels in Arabidopsis to find plants with distinct patterns of ethylene production in the cold-related biosynthetic pathway. The sensitive mutants identified here includedchs1-2,chs4-2, andchs6-2. Among these, plants of thechs4-2 mutant produced more ethylene than did the wild type after both were transferred from 4°C or 10°C to 22°C. This mutant also showed less freezing tolerance and more electrolyte leakage than the wild-type plants. Our results suggest a relationship between ethylene biosynthesis and chilling sensitivity in the mutant To determine which of the enzymes involved in ethylene biosynthesis were induced by chilling, we tested the activities of ACC synthase and ACC oxidase in both mutant and wild-type plants, and found greater activity by ACC synthase as well as a higher ACC content in the mutants after all the plants were transferred from 10°C to 22°C. However, ACC oxidase activity did not differ between mutant and wild-type plants in response to chilling treatment Therefore, we conclude thatchs4-2 mutants produce more ethylene than do other mutants or the wild type during their recovery from chilling conditions. Furthermore, we believe that ACC synthase is the key enzyme involved in this response.  相似文献   

8.
Miscanthus is a C4 perennial grass being developed for bioenergy production in temperate regions where chilling events are common. To evaluate chilling effects on Miscanthus, we assessed the processes controlling net CO2 assimilation rate (A) in Miscanthus x giganteus (M161) and a chilling‐sensitive Miscanthus hybrid (M115) before and after a chilling treatment of 12/5 °C. The temperature response of A and maximum Rubisco activity in vitro were identical below 20 °C in chilled and unchilled M161, demonstrating Rubisco capacity limits or co‐limits A at cooler temperatures. By contrast, A in M115 decreased at all measurement temperatures after growth at 12/5 °C. Rubisco activity in vitro declined in proportion to the reduction in A in chilled M115 plants, indicating Rubisco capacity is responsible in part for the decline in A. Pyruvate orthophosphate dikinase activities were also reduced by the chilling treatment when assayed at 28 °C, indicating this enzyme may also contribute to the reduction in A in M115. The maximum extractable activities of PEPCase and NADP‐ME remained largely unchanged after chilling. The carboxylation efficiency of the C4 cycle was depressed in both genotypes to a similar extent after chilling. ΦPCO2 remained unchanged in both genotypes indicating the C3 and C4 cycles decline equivalently upon chilling.  相似文献   

9.
Chilling tolerance was increased in suspension‐cultured cells and seedlings of maize (Zea mays L. cv ‘Black Mexican Sweet’) grown in media containing glycinebetaine (GB). A triphenyl tetrazolium chloride (TTC) reduction test indicated that after a 7 d chilling period at 4 °C, cells treated with 1 mm GB at 26 °C for 1 d had a survival rate (30%) that was twice as high as that of untreated controls. The addition of 2·5 m M GB to the culture medium resulted in maximum chilling tolerance (40%). The results of a cell regrowth assay were consistent with viability determined by the TTC method. In suspension‐cultured cells supplemented with various concentrations of GB, accumulation of GB in the cells was proportional to the GB concentration in the medium and was saturated at a concentration of 240 μ mol (g DW) ? 1. The degree of increased chilling tolerance was positively correlated with the level of GB accumulated in the cells. The increased chilling tolerance was time‐dependent; i.e. it was first observed 3 h after treatment and reached a plateau after 14 h. Feeding seedlings with 2·5 m M GB through the roots also improved their chilling tolerance, as evidenced by the prevention of chlorosis after chilling for 3 d at 4 °C/2 °C. Lipid peroxidation, as expressed by the production of malondialdehyde, was significantly reduced in GB‐treated cells compared with the untreated controls during chilling. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation of the cell membranes in the presence of GB.  相似文献   

10.
Cold-induced depolymerization of cortical microtubules were examined in suspension culture cells of corn (Zea mays L. cv Black Mexican Sweet) at various stages of chilling. In an attempt to determine whether microtubule depolymerization contributes to chilling injury, experiments were carried out with and without abscisic acid (ABA) pretreatment, since ABA reduces the severity of chilling injury in these cells. Microtubule depolymerization was detectable after 1 h at 4°C and became more extensive as the chilling was prolonged. There was little chilling injury after 1 d at 4°C in either ABA-treated or non-ABA-treated cells. After 3 d at 4°C, there was about 26% injury for ABA-treated and 40% injury for non-ABA-treated cells, as evaluated by 2,3,5-triphenyl-tetrazolium chloride reduction and by regrowth. After 1d at 4°C, less than 10% of cells retained full arrays of microtubules in both ABA-treated and non-ABA-treated cells, the remainder having either partial arrays or no microtubules. After 3d at 4°C, about 90% of cells showed complete or almost complete depolymerization of microtubules in both ABA-treated and non-ABA-treated cells. ABA did not stabilize the cortical microtubules against cold-induced depolymerization. In about 66% of ABA-treated cells and 57% of non-ABA-treated cells that had been held at 4°C for 3d, repolymerization of cortical microtubules occurred after 3h at 28°C. These results argue against the hypothesis that depolymerization of cortical microtubules is a primary cause of chilling injury.  相似文献   

11.
Abstract Two-week old, glasshouse-grown seedlings of spring and winter oats (Avena sativa cv. Margam and Pennal respectively) were transferred to growth rooms where the daylength was 8 h and the temperature was either 20° or 5°C. Leaves from the 20°C treatment were harvested 1 week after transfer and those from the 5°C treatment after 3 weeks. Measurements were made, at temperatures in the range 5–20°C, of the rate of senescence of excised leaf sections; the rate of in vivo tetrazolium (TTC) reduction; the NADH-MTT tetrazolium diaphorase (NMD) activity of a membrane preparation isolated by sucrose gradient centri-fugation; and Hill activity of isolated chloroplasts. Data from these experiments, either untransformed or plotted in accordance with the Arrhenius equation, were analysed by the method of maximum likelihood for the occurrence of rate-temperature discontinuities. Distinct breakpoints at 14.2–16.3°C were detected for senescence, TTC reduction and NMD in winter oat leaves from the 20°C treatment, but spring oats grown at the same temperature gave a significant discontinuity only in the rate of senescent yellowing. After the hardening treatment, 3 weeks at 5°C, senescence and TTC reduction in winter oats exhibited breakpoints at 10.1–12.4°C and spring oats gave breaks at 11.8–17.3°C. No breakpoint was observed for Hill activity from either variety under either temperature treatment. The use of this approach in studies of growth at chilling temperatures and its potential as a screening method are discussed.  相似文献   

12.
Abstract. Diapause adults of Plautia stali Scott maintained at 20°C under short day conditions (LD 12:12 h) were exposed to four temperatures of 5–20°C to examine the effect on diapause development which was assessed in terms of oviposition. Diapause adults kept at 20°C under short day conditions changed their body colour gradually from brown to green and started egg laying after a prolonged preoviposition period. Those transferred to either 10 or 15°C also showed colour change but did not lay eggs. Bugs exposed to 5°C underwent neither body colour change nor oviposition and died more rapidly than those kept at higher temperatures. When 30-day-old diapause adults were chilled at 5, 10 or 15°C for 30 or 60 days and returned to 20°C and long day conditions (LD 16:8 h), the preoviposition period varied primarily depending on the chilling, but not on the temperature. On the other hand, when 60day-old diapause adults chilled for 30 days were observed at 20°C and long day conditions, their preoviposition period tended to be longer as the chilling temperature was lower In this case, a temperature of 10°C appeared to intensify diapause. Therefore, the effect of chilling on diapause development varied depending on the age at which insects were chilled. When chilled bugs were transferred to short day conditions at 20°C, most females failed to lay any eggs and some turned green, then after a while, some green bugs changed to brown again. These results indicate that bugs remained sensitive to short day conditions even after a 60-day chilling at 10 or 15°C.  相似文献   

13.
14.
Vigna unguiculata (cowpea) is a legume adapted to high temperatures and is sensitive to low temperatures. Temperature is one of the limiting factors of growth and yield for many crops but its effect on cowpea metabolism is not known. We investigated the effect of chilling on activity of vacuolar proton pumps (V-ATPase and V-PPase) and their protein content in tonoplast vesicles of cowpea hypocotyls. Seedlings grown for 7 days at 10 or 4°C were used for experiments. Chilling treatment at 10 or 4°C markedly suppressed growth of cowpea seedlings. Following chilling at 10 and 4°C, activity of both proton pumps and the relative amount of V-PPase and subunit A of V-ATPase were significantly increased. Both substrate hydrolysis and H+ transport activities of V-PPase remained at relatively high levels during chilling treatment. For V-ATPase, treatment at 10°C for 6 days increased the ATP hydrolysis activity. However, the H+ transport activity of the enzyme was increased when treated for 4 days but was markedly decreased when treated for 6 days. Our results provide evidence for different regulation for these vacuolar proton pumps, indicating that V-PPase is the more stable proton pump throughout chilling stress.  相似文献   

15.
Cucumber seedling radicles become more chilling sensitive as they elongate. Chilling seedlings with radicles 20 mm long for 48 h at 2.5°C inhibited subsequent growth by 36%, while it reduced the growth of 70 mm-long radicles by 63%. Although the growth rate of non-chilled cucumber radicles at 25°C is constant from 20 to 80 mm, tissue viability [i.e. reduction of TTC (2,3,5-triphenyltetrazolium chloride) to formazan] and DPPH ( α,α -diphenyl- β -picrylhydrazyl) radical scavenging activity of apical tissue declines as radicles elongate from 20 to 80 mm in length. TTC reduction, DPPH-radical scavenging activity and protein content of apical tissue were higher in 20 than in 70 mm radicles immediately after chilling and after an additional 48 h of growth at 25°C. Catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activity was higher in the apical tissue of 20 than in 70 mm radicles before chilling. Immediately after chilling and after an additional 48 h at 25°C, superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.6.4.2), and guaiacol peroxidase (GPX; EC 1.11.1.7) activity increased more rapidly in 70 mm radicles than in 20 mm radicles (SOD, GR, and GPX activity in 70 mm radicles was 1.5-, 1.9- and 8.6-fold higher, respectively, than in 20 mm radicles). However, APX and CAT activity in 20 mm radicles were always higher than in 70 mm radicles. Growth after chilling enhanced the activity of all antioxidant enzymes compared to that found in non-chilled tissue; however, CAT activity in 70 mm radicles did not recover to levels found in non-chilled tissue. Higher levels of CAT, APX and DPPH-radical scavenging activity are correlated with higher chilling tolerance of 20 mm-long cucumber radicles compared to 70 mm-long radicles.  相似文献   

16.
17.
The potential of the chlorophyll fluorescence technique in screening for frost sensitivity in a range of Trifolium species from different geographical origins was assessed by measuring the decrease in variable chlorophyll fluorescence (Fvar) of leaves after freezing at - 5°C for 60 min. The method was rapid and the results obtained agreed well with a visual assessment of freezing injury carried out after leaves were returned to optimal growth conditions for 72 h. Trifolium alexandrinum (Berseem clover) cv. Tabor originating from Israel was shown to be the most frost sensitive species studied and Trifolium subterraneum (subterranean clover) cv. Mt. Barker, from temperate regions of Australia, the most frost resistant. On extended periods of freezing, frost damage increased and this was associated with a further reduction in variable chlorophyll fluorescence and in quenching capacity of the thylakoid membranes. These results thus indicate that substantial thylakoid membrane dysfunction is induced at freezing temperatures. Furthermore, it was found that frost hardening of the frost sensitive species T. alexandrinum for 21 days at 5°C reduced the extent of damage sustained by the thylakoid membranes as shown by higher fluorescence quenching capacity, smaller reduction in variable fluorescence (Fvar) and higher initial fluorescence (Fo) when leaves of hardened plants were frozen at -5°C and -7°C.  相似文献   

18.
Cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12h at 35°C showed rhythmic daily changes in chilling resistance. Chilling treatment (5°C, 48h) started at the beginning or middle of the daily light period resulted in a substantial growth inhibition of the seedlings upon return to 35°C whereas when chilling was started at the beginning or middle of the dark period the subsequent growth of the seedlings was much less inhibited. This rhythm in chilling resistance persisted under continuous light for three 24-h periods, indicating that it is of an endogenous nature. Seedlings grown under continuous light from germination showed no daily changes in resistance, but a rhythm was initiated by introduction of a dark period of 6h or longer. In 24-h cycles with different light and dark periods, maximal resistance was reached just before the start of dark period. Seedlings grown at 35°C could be acclimated to chilling by exposure to low, non-damaging temperatures (25–15°C). A short-term (6h) exposure to 25°C started at the resistant phase resulted in a large increase in resistance during the following otherwise sensitive phase. The resistance induced by the low temperature matched or slightly exceeded the maximal resistance reached during the resistant phase of the daily rhythm of chilling. The low-temperature-induced resistance and the daily rhythmic increase in resistance were not additive, indicating a common mechanism for the two kinds of resistances. An adaptive advantage of a combination of a rapid temperature-induced acclimation and the daily rhythmic increase in resistance is suggested.  相似文献   

19.
Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.  相似文献   

20.
A temperature-sensitive Dna? mutant (ts T244) of the mouse FM3A cell line was characterized. ts T244 showed no increase in cell number and rapid decrease in the rate of DNA synthesis after temperature upshift (33°C→39°C). The activity of nuclear DNA polymerase α decreased as rapidly as the rate of DNA synthesis, whereas the activities of thymidine kinase and thymidylate kinase decreased more slowly. The results suggest that the level of nuclear DNA polymerase α has close relation to the ts defect of this Dna? mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号