首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fanghänel J  Akiyama H  Uchida C  Uchida T 《FEBS letters》2006,580(13):3237-3245
We investigated the enzyme activity of peptidyl prolyl cis/trans isomerases (PPIases) in brain, testis, lung, liver, and mouse embryonic fibroblasts (MEF) of Pin1+/+ and Pin1-/- mice. The aim of this study is to determine if other PPIases can substitute for the loss of Pin1 activity in Pin1-/- mice and what influence Pin1 depletion has on the activities of other PPIases members. The results show that high PPIase activities of Pin1 are found in organs that have the tendency to develop Pin1 knockout phenotypes and, therefore, provide for the first time an enzymological basis for these observations. Furthermore we determined the specific activity (k(cat)/K(M)) of endogenous Pin1 and found that it is strongly reduced as compared with the recombinant protein in all investigated organs. These results suggest that posttranslational modifications may influence the PPIase activity in vivo. The activities originating from cyclophilin and FKBP are not influenced by the Pin1 knockout, but a basal enzymatic activity towards phosphorylated substrates could be found in Pin1-/- lysates. Real time PCR experiments of all PPIases in different mouse organs and MEF of Pin1+/+ and Pin1-/- mice support the finding and reveal the specific expression profiles of PPIases in mice.  相似文献   

2.
E. coli Par10 is a peptidyl-prolyl cis/trans isomerase (PPIase) from Escherichia coli catalyzing the isomerization of Xaa-Pro bonds in oligopeptides with a broad substrate specificity. The structure of E. coli Par10 has been determined by multidimensional solution-state NMR spectroscopy based on 1207 conformational constraints (1067 NOE-derived distances, 42 vicinal coupling-constant restraints, 30 hydrogen-bond restraints, and 68 phi/psi restraints derived from the Chemical Shift Index). Simulated-annealing calculations with the program ARIA and subsequent refinement with XPLOR yielded a set of 18 convergent structures with an average backbone RMSD from mean atomic coordinates of 0.50 A within the well-defined secondary structure elements. E. coli Par10 is the smallest known PPIase so far, with a high catalytic efficiency comparable to that of FKBPs and cyclophilins. The secondary structure of E. coli Par10 consists of four helical regions and a four-stranded antiparallel beta-sheet. The N terminus forms a beta-strand, followed by a large stretch comprising three alpha-helices. A loop region containing a short beta-strand separates these helices from a fourth alpha-helix. The C terminus consists of two more beta-strands completing the four-stranded anti-parallel beta-sheet with strand order 2143. Interestingly, the third beta-strand includes a Gly-Pro cis peptide bond. The curved beta-strand forms a hydrophobic binding pocket together with alpha-helix 4, which also contains a number of highly conserved residues. The three-dimensional structure of Par10 closely resembles that of the human proteins hPin1 and hPar14 and the plant protein Pin1At, belonging to the same family of highly homologous proteins.  相似文献   

3.
Proteomic, enzymatic, and mutant analyses revealed that peptidyl-prolyl isomerase (PPIase) activity in the chloroplast thylakoid lumen of Arabidopsis is determined by two immunophilins: AtCYP20-2 and AtFKBP13. These two enzymes are responsible for PPIase activity in both soluble and membrane-associated fractions of thylakoid lumen suggesting that other lumenal immunophilins are not active towards the peptide substrates. In thiol-reducing conditions PPIase activity of the isolated AtFKBP13 and of the total thylakoid lumen is suppressed several fold. Profound redox-dependence of PPIase activity implies oxidative activation of protein folding catalysis under oxidative stress and photosynthetic oxygen production in the thylakoid lumen of plant chloroplasts.  相似文献   

4.
Peptidyl prolyl cis/trans isomerase cyclophilin A (CypA) serves as a cellular receptor for the important immunosuppressant drug, cyclosporin A. In addition, CypA and its enzyme family have been found to play critical roles in a variety of biological processes, including protein trafficking, HIV and HCV infection/replication, and Ca(2+)-mediated intracellular signaling. For these reasons, cyclophilins have emerged as potential drug targets for several diseases. Therefore, it is extremely important to screen for novel small molecule cyclophilin inhibitors. Unfortunately, the biochemical assays reported so far are not adaptable to a high-throughput screening format. Here, we report a fluorescence polarization-based assay for human CypA that can be adapted to high-throughput screening for drug discovery. The technique is based on competition and uses a fluorescein-labeled cyclosporin A analog and purified human CypA to quantitatively measure the binding capacity of unlabeled inhibitors. Detection by fluorescence polarization allows real-time measurement of binding ratios without separation steps. The results obtained demonstrated significant correlation among assay procedures, suggesting that the application of fluorescence polarization in combination with CypA is highly advantageous for the accurate assessment of inhibitor binding.  相似文献   

5.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

6.
Li YL  Torchet C  Vergne J  Maurel MC 《Biochimie》2007,89(10):1257-1263
Ribozymes are catalytic RNAs that possess the property of cutting an RNA target via site-specific cleavage after sequence-specific recognition. Ribozymes can moreover cleave multiple substrate molecules. An increasing number of studies show that ribozymes are particularly well adapted tools against cancer, silencing or down-regulating gene expression at the RNA level. We have constructed an adenine-dependent hairpin ribozyme that cleaves the sequence at nucleotides A(225)(downward arrow)G(226) relative to the start codon of translation of the Tpl-2 kinase mRNA; this serine/threonine kinase activates the mitogen-activated protein kinase pathway implicated in cell proliferation in breast cancer. An adenine-dependent hairpin ribozyme 1 (ADHR1) was previously isolated using the Systematic Evolution of Ligands by EXponential enrichment procedure. Switch on/switch off ribozymes are particularly useful since high amounts of stable ribozyme can be produced in the absence of adenine and the ribozyme specifically cleaves its target in the presence of adenine. The ADHR1 target sequence was replaced by a sequence derived from the Tpl-2 kinase mRNA. The resulting Tpl-2 ribozyme is active in cis cleavage: kinetic studies have been performed as a function of Mg2+ concentration, adenine concentration, as well as at different pH and with various cofactors. Finally, the Tpl-2 ribozyme was shown to cleave its target in trans successfully. These findings demonstrate that a potential therapeutic ribozyme can be produced by simple sequence modification.  相似文献   

7.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

8.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

9.
We have solved the solution structure of the peptidyl-prolyl cis-trans isomerase (PPIase) domain of the trigger factor from Mycoplasma genitalium by homo- and heteronuclear NMR spectroscopy. Our results lead to a well-defined structure with a backbone rmsd of 0.23 A. As predicted, the PPIase domain of the trigger factor adopts the FK506 binding protein (FKBP) fold. Furthermore, our NMR relaxation data indicate that the dynamic behavior of the trigger factor PPIase domain and of FKBP are similar. Structural variations when compared to FKBP exist in the flap region and within the bulges of strand 5 of the beta sheet. Although the active-site crevice is similar to that of FKBP, subtle steric variations in this region can explain why FK506 does not bind to the trigger factor. Sequence variability (27% identity) between trigger factor and FKBP results in significant differences in surface charge distribution and the absence of the first strand of the central beta sheet. Our data indicate, however, that this strand may be partially structured as "nascent" beta strand. This makes the trigger factor PPIase domain the most minimal representative of the FKBP like protein family of PPIases.  相似文献   

10.
The free-living nematode Caenorhabditis elegans expresses 18 cyclophilin isoforms, eight of which are conserved single domain forms, comprising two closely related secreted or type B forms (CYP-5 and CYP-6). Recombinant CYP-5 has been purified, crystallised and the X-ray structure solved to a resolution of 1.75A. The detailed molecular architecture most strongly resembles the structure of human cyclophilin B with conserved changes in loop structure and N and C-terminal extensions. Interestingly, the active site pocket is occupied by a molecule of dithiothreitol though this has little effect on the geometry of the active site which is similar to other cyclophilin structures. The peptidyl-prolyl isomerase activity of CYP-5 has been characterised against the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, and gives a k(cat)/K(m) value of 3.6x10(6)M(-1)s(-1) that compares with a value of 6.3x10(6)M(-1)s(-1) for human cyclophilin B. The immunosuppressive drug cyclosporin A binds and inhibits CYP-5 with an IC(50) value of 50nM, which is comparable to the value of 84nM found for human cyclophilin B. CYP-6 has 67% sequence identity with CYP-5 and a molecular model was built based on the CYP-5 crystal structure. The model shows that CYP-5 and CYP-6 are likely to have very similar structures, but with a markedly increased number of negative charges distributed around the surface of CYP-6. The spatial expression patterns of the cyclophilin B isoforms were examined using transgenic animals carrying a LacZ reporter fusion to these genes, and both cyp-5 and cyp-6 are found to be expressed in an overlapping fashion in the nematode gut. The temporal expression pattern of cyp-5 was further determined and revealed a constitutive expression pattern, with highest abundance levels being found in the embryo.  相似文献   

11.
Refolding of b*C40A/C82A/P27A is comprised of several kinetically detectable folding phases. The slowest phase in refolding originates from trans-->cis isomerization of the Tyr47-Pro48 peptide bond being in cis conformation in the native state. This refolding phase can be accelerated by the peptidyl-prolyl cis/trans isomerase human cytosolic cyclophilin (Cyp18) with a kcat/K(M) of 254,000 M(-1) s(-1). The fast refolding phase is not influenced by the enzyme.  相似文献   

12.
Cyclophilins (CyPs) are a widespreading protein family in living organisms and possess the activity of peptidyl-prolyl cis-trans isomerase (PPIase), which is inhibited by cyclosporin A (CsA). The human nuclear cyclophilin (hCyP33) is the first protein which was found to contain two RNA binding domains at the amino-terminus and a PPIase domain at the carboxyl-terminus. We isolated the hCyP33 gene from the human hematopoietic stem/progenitor cells and expressed it in Escherichia coli, and determined the crystal structure of the C domain of hCyP33 at 1.88 A resolution. The core structure is a beta-barrel covered by two alpha-helices. Superposition of the structure of the C domain of hCyP33 with the structure of CypA suggests that the C domain contains PPIase active site which binds to CsA. Furthermore, C domain seems to be able to bind with the Gag-encoded capsid (CA) of HIV-1 and may affect the viral replication of HIV-1. A key residue of the active site is changed from Ala-103-CypA to Ser-239-hCyP33, which may affect the PPIase domain/substrates interactions.  相似文献   

13.
The spliceosomal cyclophilin H is a specific component of the human U4/U6 small nuclear ribonucleoprotein particle, interacting with homologous sequences in the proteins U4/U6-60K and hPrp18 during pre-mRNA splicing. We determined the crystal structure of the complex comprising cyclophilin H and the cognate domain of U4/U6-60K. The 31 amino acid fragment of U4/U6-60K is bound to a region remote from the cyclophilin active site. Residues Ile118-Phe121 of U4/U6-60K expand the central beta-sheet of cyclophilin H and the side-chain of Phe121 inserts into a hydrophobic cavity. Concomitantly, in the crystal the cyclophilin H active site is occupied by the N terminus of a neighboring cyclophilin H molecule in a substrate-like manner, indicating the capacity of joint binding to a substrate and to U4/U6-60K. Free and complexed cyclophilin H have virtually identical conformations suggesting that the U4/U6-60K binding site is pre-shaped and the peptidyl-prolyl-cis/trans isomerase activity is unaffected by complex formation. The complex defines a novel protein-protein interaction mode for a cyclophilin, allowing cyclophilin H to mediate interactions between different proteins inside the spliceosome or to initiate from its binding platforms isomerization or chaperoning activities.  相似文献   

14.
c-Jun N-terminal kinase (JNK) is activated by dual phosphorylation of both threonine and tyrosine residues in the phosphorylation loop of the protein in response to several stress factors. However, the precise molecular mechanisms for activation after phosphorylation remain elusive. Here we show that Pin1, a peptidyl-prolyl isomerase, has a key role in the JNK1 activation process by modulating a phospho-Thr-Pro motif in the phosphorylation loop. Pin1 overexpression in human breast cancer cell lines correlates with increased JNK activity. In addition, small interfering RNA (siRNA) analyses showed that knockdown of Pin1 in a human breast cancer cell line decreased JNK1 activity. Pin1 associates with JNK1, and then catalyzes prolyl isomerization of the phospho-Thr-Pro motif in JNK1 from trans- to cis-conformation. Furthermore, Pin1 enhances the association of JNK1 with its substrates. As a result, Pin1(-/-) cells are defective in JNK activation and resistant to oxidative stress. These results provide novel insights that, following stress-induced phosphorylation of Thr in the Thr-Pro motif of JNK1, JNK1 associates with Pin1 and undergoes conformational changes to promote the binding of JNK1 to its substrates, resulting in cellular responses from extracellular signals.  相似文献   

15.
Here we report the solution structure of an archaeal FK506-binding protein (FKBP) from a thermophilic archaeum, Methanococcus thermolithotrophicus (MtFKBP17), which has peptidyl prolyl cis-trans isomerase (PPIase) and chaperone-like activities, to reveal the structural basis for the dual function. In addition to a typical PPIase domain, a newly identified domain is formed in the flap loop by a 48-residue insert that is required for the chaperone-like activity. The new domain, called IF domain (the Insert in the Flap), is a novel-folding motif and exposes a hydrophobic surface, which we consider to play an important role in the chaperone-like activity.  相似文献   

16.
Human parvulin 14 (hPar14) is a folding helper enzyme belonging to the parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases). This enzyme is thought to play a role in cell-cycle and chromatin remodeling. Although hPar14 was nuclearly localized and bound to double-stranded DNA, the molecular basis of the subcellular localization and the functional regulation remained unknown.Here we show that subcellular localization and DNA-binding ability of hPar14 is regulated by posttranslational modification of its N-terminal domain. As proved by MALDI-TOF mass spectrometry and MS/MS fragmentation, hPar14 is phosphorylated at Ser19 in vitro and in vivo. In human HeLa cells the protein is most likely modified by casein kinase 2 (CK2). Phosphorylation of hPar14 is inhibited both in vitro and in vivo by 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB), a specific inhibitor of CK2 activity. Mutation of Ser19 to Ala abolishes phosphorylation and alters the subcellular localization of hPar14 from predominantly nuclear to significantly cytoplasmic. Immunostaining shows that a Glu19 mutant of hPar14, which mimics the phosphorylated state of Ser19, is localized around the nuclear envelope, but does not penetrate into the nucleoplasm. In contrast to wild-type hPar14, the in vitro DNA-binding affinity of the Glu19 mutant is strongly reduced, suggesting that only the dephosphorylated protein is the active DNA-binding form of hPar14 in the nucleus.  相似文献   

17.
The pK(a) values of the CXXC active-site cysteine residues play a critical role in determining the physiological function of the thioredoxin superfamily. To act as an efficient thiol-disulphide oxidant the thiolate state of the N-terminal cysteine must be stabilised and the thiolate state of the C-terminal cysteine residue destabilised. While increasing the pK(a) value of the C-terminal cysteine residue promotes oxidation of substrates, it has an inhibitory effect on the reoxidation of the enzyme, which is promoted by the formation of a thiolate at this position. Since reoxidation is essential to complete the catalytic cycle, the differential requirement for a high and a low pK(a) value for the C-terminal cysteine residue for different steps in the reaction presents us with a paradox. Here, we report the identification of a conserved arginine residue, located in the loop between beta5 and alpha4 of the catalytic domains of the human protein disulphide isomerase (PDI) family, which is critical for the catalytic function of PDI, ERp57, ERp72 and P5, specifically for reoxidation. An examination of the published NMR structure for the a domain of PDI combined with molecular dynamic studies suggest that the side-chain of this arginine residue moves into and out of the active-site locale and that this has a very marked effect on the pK(a) value of the active-site cysteine residues. This intra-domain motion resolves the apparent dichotomy of the pK(a) requirements for the C-terminal active-site cysteine.  相似文献   

18.
In [PtX(PPh3)3]+ complexes (X = F, Cl, Br, I, AcO, NO3, NO2, H, Me) the mutual cis and trans influences of the PPh3 groups can be considered constants in the first place, therefore the one bond Pt-P coupling constants of P(cis) and P(trans) reflect the cis and trans influences of X. The compounds [PtBr(PPh3)3](BF4) (2), [PtI(PPh3)3](BF4) (3), [Pt(AcO)(PPh3)3](BF4) (4), [Pt(NO3)(PPh3)3](BF4) (5), and the two isomers [Pt(NO2-O)(PPh3)3](BF4) (6a) and [Pt(NO2-N)(PPh3)3](BF4) (6b) have been newly synthesised and the crystal structures of 2 and 4·CH2Cl2·0.25C3H6O have been determined. From the 1JPtP values of all compounds we have deduced the series: I > Br > Cl > NO3 > ONO > F > AcO > NO2 > H > Me (cis influence) and Me > H > NO2 > AcO > I > ONO > Br > Cl > F > NO3 (trans influence). These sequences are like those obtained for the (neutral) cis- and trans-[PtClX(PPh3)2] derivatives, showing that there is no dependence on the charge of the complexes. On the contrary, the weights of both influences, relative to those of X = Cl, were found to depend on the charge and nature of the complex.  相似文献   

19.
Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation   总被引:7,自引:0,他引:7  
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent.  相似文献   

20.
【背景】淋病是我国主要的性传播疾病之一,感染淋病奈瑟菌可促进人类免疫缺陷病毒(human immunodeficiency virus, HIV)的传播和感染。目前我国淋病发病人数呈上升趋势,随着多重耐药菌株的出现,亟须研发保护性疫苗来防治淋病的传播和感染。【目的】分析淋病奈瑟菌(Neisseria gonorrhoeae, NG)肽基脯氨酰异构酶(peptidyl-prolyl isomerase, PPIase)蛋白的高级结构和表位,探讨其作为疫苗和分子诊断靶点的潜力。【方法】利用生物信息学软件分析PPIase蛋白的极性、亲水性、柔韧性、表面可及性、二级和三级结构,以及T、B细胞表位等;用pET32a(+)质粒构建PPIase蛋白的原核表达系统并纯化蛋白,用纯化的重组蛋白和超声波破碎的NG全菌抗原分别免疫BALB/c小鼠,收获免疫血清;制备NG全细胞抗原,分别以全细胞抗原酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)和间接免疫荧光试验检测重组PPIase蛋白血清抗体与NG全细胞表面抗原的结合情况。【结果】生物信息学分析结果显示,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号