首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meeting report     
Neuronal responses in somatosensory cortical areas 3b and 1- 2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1- 2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al. , Somatosens Mot Res 14 : 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

2.
Abstract This study analyzed neuronal responses in the second somatosensory (SII) and 7b cortical areas during a selective attention task. Cues directed attention to one of three simultaneous stimuli: vibrotactile stimuli applied to mirror sites on both hands or to a similarly timed auditory tone. Two stimulus patterns appeared with equal probability for the cued stimulus: a constant amplitude sinewave or the latter with a superimposed brief amplitude pulse midway in the trial. Uncued stimuli always contained amplitude pulses. Monkeys demonstrated whether an amplitude pulse at the cued location was present or absent by making appropriately rewarded up and down foot pedal movements. Cue location and stimulus pattern varied trial-wise and pseudo-randomly. Average firing rates to vibrotactile stimuli in 82 of 181 SII cells and 13 of 22 area 7b cells differed significantly during at least one epoch for trials cued to the contralateral hand when compared to trials cued to the ipsilateral hand or auditory stimulus. Predominant were relatively suppressed firing rates during times prior to the epoch containing the amplitude pulses or enhanced activity during and after these pulses. Generally, different cells showed suppression early vs enhancement later in a trial. Analyses of the ratio between firing rates before and during the amplitude pulses suggested improved evoked signals to the amplitude pulses. The discussion considers attention as a mechanism for reducing distractions, early in the trial through suppressing these signals, or for selectively increasing response magnitudes in the cued channel, especially around times when amplitude pulses were present or absent.  相似文献   

3.
The aim of this study was to investigate augmented pain processing in the cortical somatosensory system in patients with fibromyalgia (FM). Cortical evoked responses were recorded in FM (n = 19) and healthy subjects (n = 21) using magnetoencephalography after noxious intra-epidermal electrical stimulation (IES) of the hand dorsum (pain rating 6 on a numeric rating scale, perceptually-equivalent). In addition, healthy subjects were stimulated using the amplitude corresponding to the average stimulus intensity rated 6 in patients with FM (intensity-equivalent). Quantitative sensory testing was performed on the hand dorsum or thenar muscle (neutral site) and over the trapezius muscle (tender point), using IES (thresholds, ratings, temporal summation of pain, stimulus-response curve) and mechanical stimuli (threshold, ratings). Increased amplitude of cortical responses was found in patients with FM as compared to healthy subjects. These included the contralateral primary (S1) and bilateral secondary somatosensory cortices (S2) in response to intensity-equivalent stimuli and the contralateral S1 and S2 in response to perceptually-equivalent stimuli. The amplitude of the contralateral S2 response in patients with FM was positively correlated with average pain intensity over the last week. Quantitative sensory testing results showed that patients with FM were more sensitive to painful IES as well as to mechanical stimulation, regardless of whether the stimulation site was the hand or the trapezius muscle. Interestingly, the slope of the stimulus-response relationship as well as temporal summation of pain in response to IES was not different between groups. Together, these results suggest that the observed pain augmentation in response to IES in patients with FM could be due to sensitization or disinhibition of the cortical somatosensory system. Since the S2 has been shown to play a role in higher-order functions, further studies are needed to clarify the role of augmented S2 response in clinical characteristics of FM.  相似文献   

4.
Event-related brain potentials (ERPs) were recorded in a visuo-spatial attention task where the position of an imperative stimulus was indicated either validly or invalidly by a central arrow (trial-by-trial cueing). Subjects had to perform choice RT tasks with the response being dependent either on the identity of the target stimulus or on its position. When target identity was relevant for response selection, validly cued stimuli elicited amplitude enhancements of the early, sensory-evoked P1 and N1 components at lateral posterior sites. The N1 validity effect was limited to scalp sites ipsilateral to the visual field of stimulus presentation. Although these effects were found only when the sensory discrimination task was considerably difficult, they are in line with models assuming that modulations of sensory-perceptual processing (“sensory gating”) are induced by spatial cueing. However, when target location was response-relevant, N1 amplitude enhancements were consistently elicited by invalidly cued letters.CNV and LRP measures indicated that the arrow elicited response-related processing in the cue-target interval. Such processes occurred even when the cue contained no information about an upcoming response. Two consecutive lateralization phases were distinguishable in the LRP, with experimentally induced response assignments becoming effective only during the second phase.  相似文献   

5.
Continuous theta burst stimulation (cTBS) applied over the primary motor cortex (M1) can alleviate pain although the neural basis of this effect remains largely unknown. Besides, the primary somatosensory cortex (S1) is thought to play a pivotal role in the sensori-discriminative aspects of pain perception but the analgesic effect of cTBS applied over S1 remains controversial. To investigate cTBS-induced analgesia we characterized, in two separate experiments, the effect of cTBS applied either over M1 or S1 on the event-related brain potentials (ERPs) and perception elicited by nociceptive (CO2 laser stimulation) and non-nociceptive (transcutaneous electrical stimulation) somatosensory stimuli. All stimuli were delivered to the ipsilateral and contralateral hand. We found that both cTBS applied over M1 and cTBS applied over S1 significantly reduced the percept elicited by nociceptive stimuli delivered to the contralateral hand as compared to similar stimulation of the ipsilateral hand. In contrast, cTBS did not modulate the perception of non-nociceptive stimuli. Surprisingly, this side-dependent analgesic effect of cTBS was not reflected in the amplitude modulation of nociceptive ERPs. Indeed, both nociceptive (N160, N240 and P360 waves) and late-latency non-nociceptive (N140 and P200 waves) ERPs elicited by stimulation of the contralateral and ipsilateral hands were similarly reduced after cTBS, suggesting an unspecific effect, possibly due to habituation or reduced alertness. In conclusion, cTBS applied over M1 and S1 reduces similarly the perception of nociceptive inputs originating from the contralateral hand, but this analgesic effect is not reflected in the magnitude of nociceptive ERPs.  相似文献   

6.
In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, “delta-brushes,” in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic “clicks” near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus (“click” and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and “click” stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for “click” and voice stimuli: responses to “clicks” became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.  相似文献   

7.
Romo R  Hernández A  Zainos A  Brody CD  Lemus L 《Neuron》2000,26(1):273-278
Unequivocal proof that the activity of a localized cortical neuronal population provides sufficient basis for a specific cognitive function has rarely been obtained. We looked for such proof in monkeys trained to discriminate between two mechanical flutter stimuli applied sequentially to the fingertips. Microelectrodes were inserted into clusters of quickly adapting (QA) neurons of the primary somatosensory cortex (S1), and the first or both stimuli were then substituted with trains of current pulses during the discrimination task. Psychophysical performance with artificial stimulus frequencies was almost identical to that measured with the natural stimulus frequencies. Our results indicate that microstimulation can be used to elicit a memorizable and discriminable analog range of percepts, and shows that activation of the QA circuit of S1 is sufficient to initiate all subsequent neural processes associated with flutter discrimination.  相似文献   

8.
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.  相似文献   

9.
Star-nosed moles have a series of mechanosensory appendages surrounding each nostril. Each appendage is covered with sensory organs (Eimer's organs) containing both rapidly adapting and slowly adapting mechanoreceptors and each appendage is represented in primary somatosensory cortex (S1) by a single cortical module. When the skin surface of an appendage is depressed, neurons in the corresponding module in S1 respond in either a transient or sustained fashion. The aim of this study was to characterize and compare the responses of these two classes of neurons to both short (5 or 20 ms) and long (500 ms) mechanosensory stimulation. Activity from neurons in the representation of appendage 11, the somatosensory fovea, was recorded while delivering mechanosensory stimuli to the corresponding skin surface. Transient and sustained neurons had different levels of spontaneous activity and different responses to both short and long mechanosensory stimulation. Neurons with sustained responses had a significantly higher spontaneous firing rate than neurons with transient responses. Transient neurons responded to a 5 ms stimulus with excitation followed by suppression of discharge whereas sustained neurons did not exhibit post-excitatory suppression. Rather, responses of sustained neurons to 5 ms stimuli lasted several hundred milliseconds. Consequently sustained responses contained significantly more spikes than transient responses. These experiments suggest contact to the appendages causes two distinct firing patterns in cortex regardless of the duration of the stimulus. The sustained and transient responses could reflect either the activity of fundamentally different classes of neurons or activity in distinct subcortical and cortical networks.  相似文献   

10.
Recent data on learning-related changes in animal and human auditory cortex indicate functions beyond mere stimulus representation and simple recognition memory for stimuli. Rather, auditory cortex seems to process and represent stimuli in a task-dependent fashion. This implies plasticity in neural processing, which can be observed at the level of single neuron firing and the level of spatiotemporal activity patterns in cortical areas. Auditory cortex is a structure in which behaviorally relevant aspects of stimulus processing are highly developed because of the fugitive nature of auditory stimuli.  相似文献   

11.
In wave-type weakly electric fish, two distinct types of primary afferent fibers are specialized for separately encoding modulations in the amplitude and phase (timing) of electrosensory stimuli. Time-coding afferents phase lock to periodic stimuli and respond to changes in stimulus phase with shifts in spike timing. Amplitude-coding afferents fire sporadically to periodic stimuli. Their probability of firing in a given cycle, and therefore their firing rate, is proportional to stimulus amplitude. However, the spike times of time-coding afferents are also affected by changes in amplitude; similarly, the firing rates of amplitude-coding afferents are also affected by changes in phase. Because identical changes in the activity of an individual primary afferent can be caused by modulations in either the amplitude or phase of stimuli, there is ambiguity regarding the information content of primary afferent responses that can result in ‘phantom’ modulations not present in an actual stimulus. Central electrosensory neurons in the hindbrain and midbrain respond to these phantom modulations. Phantom modulations can also elicit behavioral responses, indicating that ambiguity in the encoding of amplitude and timing information ultimately distorts electrosensory perception. A lack of independence in the encoding of multiple stimulus attributes can therefore result in perceptual illusions. Similar effects may occur in other sensory systems as well. In particular, the vertebrate auditory system is thought to be phylogenetically related to the electrosensory system and it encodes information about amplitude and timing in similar ways. It has been well established that pitch perception and loudness perception are both affected by the frequency and intensity of sounds, raising the intriguing possibility that auditory perception may also be affected by ambiguity in the encoding of sound amplitude and timing.  相似文献   

12.
A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.  相似文献   

13.
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.  相似文献   

14.
Avulsion of spinal nerve roots in the brachial plexus (BP) can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1) is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1) knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico-cortical pathways has a critical role for sensory recovery in patients after crossing nerve transfer.  相似文献   

15.

Background

In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear.

Methodology/Principal Findings

We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively.

Conclusions

The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.  相似文献   

16.
Within the rat whisker-to-barrel pathway, local circuits in cortical layer IV are more sensitive to the initial timing of deflection-evoked thalamic responses than to the total number of spikes comprising them. Because thalamic response timing better reflects whisker deflection velocity than amplitude, cortical neurons are more responsive to the former than the latter. The aim of this study is to determine how deflection velocity and amplitude may be encoded by the primary afferent neurons innervating the vibrissae. Responses of 81 extracellularly recorded trigeminal ganglion neurons (60 slowly and 21 rapidly adapting) were studied using controlled whisker stimuli identical to those used previously to investigate the velocity and amplitude sensitivities of thalamic and cortical neurons. For either slowly (SA) or rapidly adapting (RA) neurons, velocity is reflected by both response magnitude, measured as the total number of evoked spikes/stimulus, and initial firing rate, measured as the number of spikes discharged during the first 2 ms of the response. Deflection amplitude, on the other hand, is represented only by the SA population in their response magnitudes. Thus, in both populations initial firing rates unambiguously reflect deflection velocity. Together with previous findings, results demonstrate that information about deflection velocity is preserved throughout the whisker-to-barrel pathway by central circuits sensitive to initial response timing.  相似文献   

17.
The response of a neuron in the visual cortex to stimuli of different contrast placed in its receptive field is commonly characterized using the contrast response curve. When attention is directed into the receptive field of a V4 neuron, its contrast response curve is shifted to lower contrast values (Reynolds et al., 2000). The neuron will thus be able to respond to weaker stimuli than it responded to without attention. Attention also increases the coherence between neurons responding to the same stimulus (Fries et al., 2001). We studied how the firing rate and synchrony of a densely interconnected cortical network varied with contrast and how they were modulated by attention. The changes in contrast and attention were modeled as changes in driving current to the network neurons. We found that an increased driving current to the excitatory neurons increased the overall firing rate of the network, whereas variation of the driving current to inhibitory neurons modulated the synchrony of the network. We explain the synchrony modulation in terms of a locking phenomenon during which the ratio of excitatory to inhibitory firing rates is approximately constant for a range of driving current values. We explored the hypothesis that contrast is represented primarily as a drive to the excitatory neurons, whereas attention corresponds to a reduction in driving current to the inhibitory neurons. Using this hypothesis, the model reproduces the following experimental observations: (1) the firing rate of the excitatory neurons increases with contrast; (2) for high contrast stimuli, the firing rate saturates and the network synchronizes; (3) attention shifts the contrast response curve to lower contrast values; (4) attention leads to stronger synchronization that starts at a lower value of the contrast compared with the attend-away condition. In addition, it predicts that attention increases the delay between the inhibitory and excitatory synchronous volleys produced by the network, allowing the stimulus to recruit more downstream neurons. Action Editor: David Golomb  相似文献   

18.
Although it is well known that attention to a visual or auditory stimulus can enhance its perception, less is known concerning the effects of attention on the perception of natural tactile stimuli. The present study was conducted to examine the magnitude of the effect of cross-modal manipulations of attention in human subjects on the detection of weak, low-frequency vibrotactile stimuli delivered to the glabrous skin of the finger pad of the right index finger via an Optacon. Three suprathreshold vibrotactile arrays (40 Hz), varying in the number of activated pegs and hence the area of skin stimulated, were used. Subjects were trained to detect the occurrence of vibrotactile or visual stimuli and to respond by pressing a foot pedal as quickly as possible thereafter. Two instructional lights were used to cue the subjects as to which stimulus modality they should attend, in three experimental conditions. In the first cue condition, the forthcoming stimulus modality was indicated by the illumination of its associated light. In the second cue condition, both instructional lights were illuminated, and the subjects were asked to divide their attention equally between the two modalities. In the third cue condition, the stimulus modality was falsely indicated by the illumination of the cue not associated with the stimulus to be presented. Reaction times (RTs) were calculated for each trial. For each modality, tactile and visual, the RTs varied significantly with the cue condition, with the mean RT changing in a graded manner across the experimental conditions (being shortest for the correctly cued condition, intermediate for the neutrally cued condition, and longest for the incorrectly cued condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.

Background

In healthy subjects repeated tactile stimulation in a conditioning test stimulation paradigm yields attenuation of primary (S1) and secondary (S2) somatosensory cortical activation, whereas a preceding painful stimulus results in facilitation.

Methodology/Principal Findings

Since previous data suggest that cognitive processes might affect somatosensory processing in S1, the present study aims at investigating to what extent cortical reactivity is altered by the subjective estimation of pain. To this end, the effect of painful and tactile stimulation on processing of subsequently applied tactile stimuli was investigated in patients with fibromyalgia syndrome (FMS) and in subjects with masochistic behaviour (MB) by means of a 122-channel whole-head magnetoencephalography (MEG) system. Ten patients fulfilling the criteria for the diagnosis of FMS, 10 subjects with MB and 20 control subjects matched with respect to age, gender and handedness participated in the present study. Tactile or brief painful cutaneous laser stimuli were applied as conditioning stimulus (CS) followed by a tactile test stimulus (TS) 500 ms later. While in FMS patients significant attenuation following conditioning tactile stimulation was evident, no facilitation following painful stimulation was found. By contrast, in subjects with MB no attenuation but significant facilitation occurred. Attenuation as well as facilitation applied to cortical responses occurring at about 70 ms but not to early S1 or S2 responses. Additionally, in FMS patients the amount of attenuation was inversely correlated with catastrophizing tendency.

Conclusion

The present results imply altered cortical reactivity of the primary somatosensory cortex in FMS patients and MB possibly reflecting differences of individual pain experience.  相似文献   

20.
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号