首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
初志国  冯杰  顾蕴辉 《生理学报》1989,41(3):255-263
实验用乌拉坦麻醉、箭毒化、人工呼吸的大鼠,观察到:(1) 胞体兴奋剂L-谷氨酸钠(Glu)注入尾侧导水管周围灰质腹外侧部(PAG)引起明显的加压反应,(2) 该效应可被双侧延髓头端腹外侧(RVL)加压区内注射酚妥拉明或心得安衰减,但不受阿托品注入RVL影响;表明此升压反应是通过RVL及其内的α-及β-受体实现的。(3) RVL内注入心得安也可衰减电刺激腹侧臂旁核(NPV)的加压作用,却不影响Glu注入NPV的升压效应;结合以往的实验结果,提示尾侧PAG腹外侧部的神经元发出的轴突,可能一方面路过臂旁核直接作用于RVL内的β-受体,另一方面可能在臂旁核内换元,然后作用于RVL内的α-受体,而起升压作用。  相似文献   

2.
Sympathoexcitation and increased blood pressure evoked by central networks integrating defensive behavior are fundamental to the acute stress response. A balance between excitatory glutamatergic and inhibitory GABAergic neurotransmission in the dorsal periaqueductal gray (dPAG) results in a tonic level of activity in the alerting system. Neuromodulators such as endocannabinoids have been shown to influence the sympathoexcitatory and pressor components of acute stress in the dPAG, exemplified by the defense response as a model, but the mechanism of integration remains unknown. The present study examines the role of GABA and its interaction with endocannabinoids in modulating sympathetic nerve activity and blood pressure related to the defense response. Microinjection of the broad-spectrum excitatory amino acid dl-homocysteic acid (DLH) identified sites of the defense pathway in the dPAG from which an increase in renal sympathetic nerve activity and blood pressure could be evoked, and subsequent microinjections were made at the same site through a multibarrelled micropipette. Blockade of GABAA receptors or microinjection of the cannabinoid 1 receptor agonist anandamide elicited a renal sympathoexcitation and pressor response. Prior microinjection of the GABAA receptor antagonist gabazine attenuated the sympathoexcitation and pressor response associated with anandamide microinjection. In contrast, the sympathetic response to DLH was enhanced by GABAA receptor blockade. These data demonstrate that sympathoexcitatory neurons in the dPAG are under tonic inhibition by GABA and that endocannabinoids modulate this GABAergic neurotransmission to help regulate components of the defense response.  相似文献   

3.
乌拉坦麻醉、箭毒制动的大鼠在人工呼吸维持下,将谷氨酸钠(Glu)注入岛皮层引起血压升高、心率加快;而岛皮层周围区注入Glu或岛皮层内注入生理盐水对血压和心率无明显影响。双侧延髓头端腹外侧区(RVL)内分别注入酚妥拉明、心得安或阿托品均可削弱兴奋岛皮层引起的升压反应,i.v.酚妥拉明也有这削弱的效应,但i.v.心得安或甲基阿托品则无明显作用。上述结果表明岛皮层引起的升压反应是由RVL(α-,β-和M-受体)-交感缩血管神经系统介导的。  相似文献   

4.
Stimulation of cutaneous and muscle afferents induces several cardiovascular adjustments such as hypertension, tachycardia, and muscle vasodilation. Although previous studies have demonstrated that the rostral ventrolateral medulla (RVL) mediates sympathoexcitation and pressor responses to sciatic nerve stimulation (SNS), whether it also mediates blood flow adjustments remains unclear. Therefore, in the present study, we examined the role of the RVL in the vasodilation induced by SNS and the possible neurotransmitters involved. In Urethane-anesthetized, paralyzed, and artificially ventilated rats, SNS (square pulses, 1 ms, 20 Hz, 800--1200 microA, 10 s) produced increases in blood pressure, heart rate, blood flow, and vascular conductance of the stimulated limb. Unilateral microinjection of kainic acid (2 nmol/100 nl) into the RVL contralateral to the stimulated limb abolished cardiovascular adjustments to SNS. Unilateral microinjections of kynurenic acid (2 nmol/100 nl) selectively abolished the pressor response to SNS, whereas bicuculline (400 pmol/100 nl) abolished the increases in blood flow without changing the pressor response. These results suggest that glutamatergic synapses within the RVL mediate pressor responses, whereas GABAergic synapses may mediate the vasodilation to SNS.  相似文献   

5.
Y H Ku  Y F Jia  Y Z Chang 《Peptides》1999,20(2):171-176
In urethane-anesthetized rats, microinjection of angiotensin II (AII) into either the subfornical organ (SFO), nucleus paraventricularis (NPV), or rostral ventrolateral medulla (RVL), respectively, all induced pressor responses, but the heart rate remained unchanged. Preinjection of [Sar1, Thr8]-angiotensin II (ST-AII, an AII antagonist) into bilateral NPV blocked the SFO-pressor response to AII. Bilateral RVL pretreated with ST-All markedly attenuated the pressor response of the SFO or NPV to AII. Hexamethonium or methyl atropine (IV) also reduced the SFO-pressor response. The results show that All can activate the SFO, NPV, and RVL successively, thereby inducing the pressor response; both excitation of sympathetic nerves and inhibition of the cardiac vagus are involved in this response.  相似文献   

6.
The interactive role of rostral ventrolateral medulla (RVL) cardiovascular neurons and brain angiotensin II (Ang II) in regulating the arterial blood pressure was examined by recording simultaneously the spontaneous activity of these spinal projecting neurons and the arterial blood pressure in the pentobarbital-anesthetized spontaneously hypertensive rat (SHR) and its normotensive control, the Wistar Kyoto rat (WKY). It was found that Ang II elicited dose-dependent excitatory responses in a subpopulation of RVL cardiovascular neurons, followed by a subsequent increase in blood pressure. These effects of Ang II were significantly greater in SHR than in WKY. The effects were attenuated or abolished by co-administration of Ang II antagonist, [Sar1, Ile8]-Ang II. Pre-administration of [Sar1, Ile8]-Ang II to RVL using bilateral microinjection attenuated the blood pressure effects of intracerebroventricularly administered Ang II by as much as 70%. These results indicated that spinal projecting RVL cardiovascular neurons are important in mediating the pressor action of Ang II. The enhanced sensitivity and responsiveness of RVL cardiovascular neurons to Ang II may be pertinent to the genesis of hypertension in adult SHR.  相似文献   

7.
We have previously demonstrated that microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-B?tzinger complex (pre-B?tC) can produce either phasic or tonic excitation of phrenic nerve discharge during hyperoxic normocapnia. Breathing, however, is influenced by input from both central and peripheral chemoreceptor activation. This influence of increased respiratory network drive on pre-B?tC-induced modulation of phrenic motor output is unclear. Therefore, these experiments were designed to examine the effects of chemical stimulation of neurons (DLH; 10 mM; 10-20 nl) in the pre-B?tC during hyperoxic modulation of CO2 (i.e., hypercapnia and hypocapnia) and during normocapnic hypoxia in chloralose-anesthetized, vagotomized, mechanically ventilated cats. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-B?tC during baseline conditions of hyperoxic normocapnia [arterial PCO2 (PaCO2) = 37-43 mmHg; n = 22] produced a tonic (nonphasic) excitation of phrenic nerve discharge. During hypercapnia (PaCO2 = 59.7 +/- 2.8 mmHg; n = 17), similar microinjection produced excitation in which phasic respiratory bursts were superimposed on varying levels of tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.01). In contrast, during hypocapnia (PaCO2 = 29.4 +/- 1.5 mmHg; n = 11), microinjection of DLH produced nonphasic tonic excitation of phrenic nerve discharge that was less robust than the initial (normocapnic) response (i.e., decreased amplitude). During normocapnic hypoxia (PaCO2 = 38.5 +/- 3.7; arterial Po2 = 38.4 +/- 4.4; n = 8) microinjection of DLH produced phrenic excitation similar to that seen during hypercapnia (i.e., increased frequency of phasic respiratory bursts superimposed on tonic discharge). These findings demonstrate that phrenic motor activity evoked by chemical stimulation of the pre-B?tC is influenced by and integrates with modulation of respiratory network drive mediated by input from central and peripheral chemoreceptors.  相似文献   

8.
The caudal ventral respiratory column (cVRC) contains premotor expiratory neurons that play an important role in cough-related expiratory activity of chest wall and abdominal muscles. Microinjection of d,l-homocysteic acid (DLH) was used to test the hypothesis that local activation of cVRC neurons can suppress the cough reflex. DLH (20-50 mM, 10-30 nl) was injected into the region of cVRC in nine anesthetized spontaneously breathing cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Unilateral microinjection of DLH (1-1.5 nmol) elicited bilateral increases in tonic and phasic respiratory ABD EMG activity, and it altered the respiratory pattern and laryngeal motor activities. However, DLH also decreased cough frequency by 51 +/- 7% compared with control (P < 0.001) and the amplitude of the contralateral (-35 +/- 3%; P < 0.001) and ipsilateral (-34 +/- 5%; P < 0.001) ABD EMGs during postinjection coughs compared with control. The cough alterations were much less pronounced after microinjection of a lower dose of DLH (0.34-0.8 nmol). No cough depression was observed after microinjections of vehicle. These results suggest that an endogenous cough suppressant neuronal network in the region of the cVRC may exist, and this network may be involved in the control of cough reflex excitability.  相似文献   

9.
兴奋大鼠延髓A1区引起降压、降心率效应的机制   总被引:1,自引:1,他引:0  
魏东  顾蕴辉 《生理学报》1989,41(5):444-451
在水合氯醛麻醉、箭毒化、人工呼吸的大鼠,观察到:(1) A_1区注入谷氨酸钠引起明显的血压下降和心率减慢。(2) 切断双侧颈迷走神经明显衰减A_1区的降压,降心率效应。(3) 延髓头端腹外侧区(RVL)预先注射酚妥拉明或心得安,均能明显衰减谷氨酸钠兴奋A_1区的降压效应,A_1区的降心率作用基本不受影响,将纳洛酮注入RVL后,A_1区的降压和降心率效应均无明显变化;注射荷包牡丹碱入RVL则使A_1区的降压、降心率效应反转。(4) RVL内注入酚妥拉明或心得安本身使基础血压降低,注射荷包牡丹碱入RVL则使基础血压升高(提示RVL内的α-,β-受体中介对RVE加压神经元的紧张性兴奋作用,GABA受体中介紧张性抑制作用);另一方面,RVL内注入心得安使基础心率减慢、注入纳洛酮或荷包牡丹碱使基础心率加快(说明β-受体中介紧张性心加速效应,阿片受体和GABA受体中介紧张性心抑制效应)。  相似文献   

10.
Ku YH  Li YH 《Peptides》2004,25(4):615-620
In the central nervous system and the periphery, atrial natriuretic peptide (ANP) and angiotensinII(AngII) play important and opposite roles in regulating blood pressure and fluid electrolyte balance. Their central mechanisms are unclear. In the brain the anteroventral third ventricle region (AV3V) contains the most prominent collection of atriopeptin-like immunoreactive perikarya. Our previous studies show that: (1) AV3V stimulation by glutamate produces a fall in blood pressure; (2) there is an AngII pressor system composed of the lateral hypothalamus/perifornical region (LH/PF), subfornical organ (SFO), nucleus paraventricularis (NPV) and rostral ventrolateral medulla (RVL). The present study was to examine whether ANPergic projections from the AV3V could act on nuclei involved in the above-mentioned AngII pressor system. Here we demonstrate that: (1) Injection of atriopeptinIII into the LH/PF, SFO, NPV, or RVL induces a depressor response; whereas injection of normal saline has no effect. (2) Pre-injection of A 71915 (an atriopeptinIII antagonist) into the LH/PF, SFO, NPV, or RVL reverses the depressor response of the AV3V to glutamate (Glu). The results suggest that excitation of atriopeptinergic neurons in the AV3V by Glu produces an inhibitory effect on each nucleus in the LH/PF-SFO-NPV-RVL AngII pressor system.  相似文献   

11.
Previous work from this laboratory has demonstrated that the chemical activation of cell bodies in the caudal ventrolateral medulla of chloralose-anesthetized dogs decreased bronchomotor tone by withdrawing cholinergic input to airway smooth muscle. In the present study we determined the bronchomotor responses to microinjection of DL-homocysteic acid (100 mM; 25-50 nl) into the rostral ventrolateral (RVL) medulla of chloralose-anesthetized dogs. Total lung resistance was used as a functional index of bronchomotor tone. Microinjection of DL-homocysteic acid into the 20 sites located in the lateral aspect of the RVL medulla increased both total lung resistance [from 6.5 +/- 0.4 to 9.1 +/- 0.8 (SE) cmH2O.l-1.s; P less than 0.05] and mean arterial pressure (from 125 +/- 5 to 148 +/- 8 mmHg; P less than 0.05). Microinjection of this amino acid into nine sites located in the medial aspect of the RVL medulla increased mean arterial pressure (from 130 +/- 6 to 153 +/- 6 mmHg; P less than 0.05) but had no effect on total lung resistance. We confirmed in three sites that the increase in total lung resistance evoked by microinjection of DL-homocysteic acid was accompanied by an increase in tracheal smooth muscle tension. The increase in total lung resistance evoked by DL-homocysteic acid was not affected by beta-adrenergic blockade but was abolished by muscarinic blockade.  相似文献   

12.
在麻醉大鼠观察了向延髓腹外侧区微量注射NO合成酶抑制剂N-硝基左旋精氨酸(LNNA)和硝普钢(SNP)对血压、心率和肾交感神经活动的影响,旨在探讨中枢左旋精氨酸-NO通路在动脉血压调节中的作用及其机制。实验结果如下:(1)向延髓腹外侧头端区(RVLM)注射L-NNA后,平均动脉压(MAP)升高,肾交感神经活动(RSNA)增强;心率(HR)减慢,但无统计学意义。MAP和RSNA的变化持续30min以上;此效应可被预先静注左旋精氨酸所逆转。(2)向RVLM微量注射SNP,MAP降低,RSNA减弱;但HR的变化无统计学意义。(3)向延髓腹外侧尾端区(CVLM)注射L-NNA,MAP降低,HR减慢,RSNA减弱。(4)向CVLM微量注射SNP,MAP升高,RSNA增强,而心率无明显变化。以上结果表明,中枢左旋精氨酸-NO通路对延髓腹外侧部的神经元活动有调变作用。  相似文献   

13.
We have shown that the modulatory effect of electroacupuncture (EA) on the blood pressure (BP) response induced by visceral organ stimulation is related to inhibition of cardiovascular neurons in the rostral ventrolateral medulla (rVLM) through a mechanism that involves opioids. This effect is long lasting and may involve a long-loop neural supraspinal pathway, including the arcuate nucleus (ARC), which is an important site of opioid neurotransmitter synthesis. Therefore, we evaluated the role of the hypothalamic ARC and its interaction with the midbrain ventrolateral periaqueductal gray (vlPAG) in the EA-BP response. The gallbladder of alpha-chloralose-anesthetized cats was stimulated to test for the influence of EA on splanchnic afferent-induced cardiovascular reflexes. Electrodes were placed around the splanchnic nerve (SN), and acupuncture needles were applied at P5-6 acupoints overlying the median nerve (MN). Electrophysiological recordings showed that spontaneous activity of ARC and vlPAG neurons was low (1.3 +/- 0.5 and 2.0 +/- 0.5 spikes/s, respectively). We observed a gradation of responses of ARC neurons to the stimulation of different acupoints, ranging from uniform responses of all neurons during stimulation of the P5-6, LI4-11, H5-6, and St2-G2 located over deep nerves to fewer responses during stimulation of LI6-7 and G37-39 located over superficial nerves. Microinjection of the excitatory amino acid dl-homocysteic acid (DLH 4 nM, 50 nl) into the ARC augmented the responses of vlPAG neurons, whereas microinjection of kainic acid (KA 1 mM, 50 nl) to deactivate neurons in the ARC decreased vlPAG responses to SN stimulation. Thirty minutes of EA at P5-6 increased the SN-evoked discharge of vlPAG neurons (7.0 +/- 1.2 to 14.3 +/- 3.0 spikes/30 stimuli), a response that was blocked by microinjection of KA into the ARC. Microinjection of DLH into the ARC, like EA, inhibited (30 min) the reflex increase in BP induced by application of bradykinin (BK) to the gallbladder, whereas microinjection of KA into the ARC blocked the inhibitory influence of EA at P5-6 on the BK-induced BP response. These results suggest that excitatory projections from the ARC to the vlPAG are essential to the EA inhibition of the reflex increase in BP induced by SN or gallbladder visceral afferent stimulation.  相似文献   

14.
The present study was performed to determine whether sympathetic outflow and arterial blood pressure in water-deprived rats are dependent on the ongoing neuronal activity of the hypothalamic paraventricular nucleus (PVN). Renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate were recorded in urethane-alpha-chloralose-anesthetized rats that were deprived of water but not food for 48 h before experiments. Acute inhibition of the PVN by bilateral microinjection of the GABA(A) agonist muscimol (100 pmol/side) significantly decreased RSNA in water-deprived rats (-26.7 +/- 4.7%, n = 7) but was without effect in control rats (1.3 +/- 6.3%, n = 7). Similarly, injection of muscimol produced a greater decrease in MAP in water-deprived rats than in control rats (-46 +/- 3 vs. -16 +/- 3 mmHg, respectively), although baseline MAP was not different between groups (105 +/- 4 vs. 107 +/- 4 mmHg, respectively). Neither bilateral microinjection of isotonic saline vehicle (100 nl/side) into the PVN nor muscimol (100 pmol/side) outside the PVN altered RSNA or MAP in either group. In addition, ganglionic blockade with hexamethonium (30 mg/kg i.v.) significantly decreased MAP in both groups; however, the decrease in MAP was significantly greater in water-deprived rats than in control rats (62 +/- 2 vs. 48 +/- 2 mmHg, respectively). Collectively, these findings suggest that sympathetic outflow contributes more to the maintenance of blood pressure in the water-deprived rat, and this depends, at least partly, on the ongoing activity of PVN neurons.  相似文献   

15.
目的:分析谷氨酸兴奋下兵脑腹内侧核(NVM)引起升压反应的机制。方法:大鼠脑内或静脉注射不同药物,记录血压和心率的变化。结果:①L-谷氨酸(Glu)兴奋NVM、P物质(SP)注入背内侧核(NDM)室旁核(NPV)或延髓头端腹外侧区(RVL)均引起升压反应;②NVM升压反应可被双侧NDM、NPV或PVL内预先注射[D-Pro^2,D-Phe^7,D-Trp^9]-P物质(SP拮抗剂)衰减,但RVL内注射阿托品无此效应;③酚妥拉明(i.v.)也能使NVM升压反应减小,而心得安或甲基阿托品(i.v.)对该升压反应无影响。结论:兴奋NVM可通过NDM(SP受体),作用于NPV(SP受体)升压区和RVL(SP受体)-交感缩血管神经系统产生升压反应。心交感和心迷走神经不参与该反应。  相似文献   

16.
头端延髓腹外侧区注射5—羟色胺对应激性高血粘度...   总被引:3,自引:0,他引:3  
翁可  郭学勤 《生理学报》1992,44(3):244-253
Experiments were carried out on 62 wistar rats. The hyperviscosity and elevation of blood pressure were induced by hanging and restraining the rats with their four limbs tied on a frame. It was found that microinjection of 5-HT (25 micrograms/10 microliters) into the 4th ventricle of the brain or bilateral microinjection of 5-HT (4 micrograms/0.5 microliters/site) into rostral ventrolateral medulla (rVLM) reduced stress-induced hyperviscosity (p < 0.01) and elevation of blood pressure (p < 0.01). The effect of 5-HT injected into the 4th ventricle or rVLM was blocked by bilateral microinjection of cinanserine (4 micrograms/0.5 microliter/site) into rVLM. These results suggest that microinjection of 5-HT into 4th ventricle and rVLM could reduce stress-induced hyperviscosity and elevation of blood pressure and these effects were probably mediated via 5-HT receptors in the rVLM.  相似文献   

17.
Microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-B?tzinger complex (pre-B?tC) can produce tonic excitation of phrenic nerve discharge. Although this DLH-induced tonic excitation can be modified by systemic hypercapnia, the role of focal increases in pre-B?tC CO(2)/H(+) in this modulation of the DLH-induced response remains to be determined. Therefore, we examined the effects of unilateral microinjection of DLH (10 mM; 10-20 nl) into the pre-B?tC before and during increased focal pre-B?tC CO(2)/H(+) (i.e., focal tissue acidosis) in chloralose-anesthetized, vagotomized, mechanically ventilated cats. Focal tissue acidosis was produced by blockade of carbonic anhydrase with either focal acetazolamide (AZ) or methazolamide (MZ) microinjection. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-B?tC produced a nonphasic tonic excitation of phrenic nerve discharge (n = 10). Microinjection of 10-20 nl AZ (50 microM) or MZ (50 microM) into these 10 sites in the pre-B?tC increased the amplitude and/or frequency of eupneic phrenic bursts, as previously reported. Subsequent microinjection of DLH produced excitation in which phasic respiratory bursts were superimposed on tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.05). These findings demonstrate that modulation of phrenic motor activity evoked by DLH-induced activation of the pre-B?tC is influenced by focal CO(2)/H(+) chemosensitivity in this region. Furthermore, these findings suggest that focal increases in pre-B?tC CO(2)/H(+) may have contributed to the modulation of the DLH-induced responses previously observed during systemic hypercapnia.  相似文献   

18.
A small collection of neurons in the dorsal lateral medulla, the paratrigeminal nucleus (Pa5), projects directly to the rostroventrolateral reticular nucleus (RVL). Bradykinin (BK) microinjections in the Pa5 produce marked pressor responses. Also, the Pa5 is believed to be a component of the neuronal substrates of the somatosensory response and the baroreflex arc. Considering the developing interest in the functional physiology of the Pa5, the present study was designed to characterize RVL neuronal activity in response to BK microinjections in the Pa5 as well as to phenylephrine-induced blood pressure increases in freely behaving rats. Of the 46 discriminated RVL neurons, 82% responded with a 180% mean increase in firing rate after BK application to the paratrigeminal nucleus, before the onset of the blood pressure increase. Thirty (79%) of the RVL BK-excited neurons were baroreceptor-inhibited units that responded with a 30% decrease in firing rate in response to a phenylephrine-produced increase of blood pressure. Twenty-seven (71%) units of the latter population displayed cardiac-cycle-locked rhythmic activity. The findings demonstrate a BK-stimulated functional connection between the Pa5 and RVL that may represent the neural pathway in the BK-mediated pressor response. This pathway may be relevant to baroreflex mechanisms since it relates to cardiovascular pressure-sensitive neurons.  相似文献   

19.
Hypertension is associated to an increase in central oxidative stress and an attenuation of the baroreflex control of arterial pressure. The present study evaluated the effect of alterations in the levels of nitric oxide (NO) and superoxide anion in the caudal ventrolateral medulla (CVLM), a key area of the brainstem for the baroreflex control of arterial pressure, in renovascular hypertensive rats (2K1C). Baseline mean arterial pressure (MAP), heart rate (HR), and reflex bradycardia were evaluated 30 days after renal artery occlusion in anesthetized (urethane, 1.2 g/kg, i.p.) 2K1C or normotensive (SHAM) rats. The MAP, HR, and baroreflex control of HR were evaluated before and after CVLM microinjections of the non-selective NOS inhibitor L-NAME (10 nmol), the NO precursor L-ARG (50 nmol), or the antioxidant ascorbic acid, Vit C (10 nmol). In both 2K1C and SHAM animals, CVLM microinjection of L-NAME produced a decrease in MAP, whereas L-ARG induced a significant increase in MAP. However, microinjection of Vit C into the CVLM produced a decrease in MAP and HR only in 2K1C and not in SHAM rats. Cardiovascular effects produced by microinjection of l-ARG into the CVLM were abolished by prior microinjection of L-NAME in the CVLM of 2K1C and SHAM rats. Microinjection of L-NAME into the CVLM increased the sensitivity of reflex bradycardia in 2K1C animals. In contrast, the CVLM microinjection of L-ARG reduced reflex bradycardia only in SHAM rats. Vit C in the CVLM did not change reflex bradycardia in either 2K1C or in SHAM rats. These results suggest that increased oxidative stress in the CVLM during hypertension contributes to the reduced baroreflex sensitivity and to maintain hypertension in the 2K1C model.  相似文献   

20.
郭涓  钱忠明 《生理学报》1997,49(1):110-114
在戊巴比妥钠麻醉的大鼠,观察杏仁中央核内微量注射促肾上腺皮质激素释放激素对血压的影响,并对其中枢机制进行初步探讨。结果如下:(1)CeA内微量注射CRH产生剂量依赖血压升高,这种升压效应一般出现在 注射后5min左右,可维持1h以上。(2)CeACRH体拮抗a-helicalCRH9-41,能取消CeA内注射CRH引起的升压效应。(3)侧脑室内给予纳洛酮,显著减弱CeA内注射CRH引起的升压效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号