首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H(2)O(2)-induced pulmonary arterial smooth muscle (PASM) contractions are independent of Ca(2+) and myosin light chain phosphorylation. The purpose of this study was to determine whether mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1 and ERK2, or protein kinase C (PKC) activation is required for H(2)O(2)-induced contraction. Porcine PASM strips were stimulated with 1 mM H(2)O(2), 120 mM KCl, or 10 microM phorbol myristic acetate and freeze clamped at various times during the contractions. Changes in relative amounts of tyrosine/threonine phosphorylated MAPK compared with total MAPK were measured. MAPK tyrosine phosphorylation levels increased in correlation with tension development. However, 50 microM PD-98059, a MAPK/ERK kinase-MAPK kinase blocker, reduced MAPK phosphorylation below resting levels, even though the magnitude of the isometric tension development was unaltered. Freeze-clamped PASM strips were placed in a PKC activity assay buffer containing (32)P and CaCl(2) to measure the total myelin basic protein phosphorylation. The data show that: 1) the time courses of PKC activity and force produced in response to H(2)O(2) do not correlate, and 2) MAPK activation may be a concurrent event with, or a consequence of, tension development in response to a variety of agonists but is not responsible for contractions to H(2)O(2), high K(+), or phorbol esters.  相似文献   

2.
Little is known about the adaptation of uterine artery smooth muscle contractile mechanisms to pregnancy. The present study tested the hypothesis that pregnancy differentially regulates thick- and thin-filament regulatory pathways in uterine arteries. Isometric tension, intracellular free Ca(2+) concentration, and phosphorylation of 20-kDa myosin light chain (MLC(20)) were measured simultaneously in uterine arteries isolated from nonpregnant and near-term (140 days gestation) pregnant sheep. Phenylephrine-mediated intracellular free Ca(2+) concentration, MLC(20) phosphorylation, and contraction tension were significantly increased in uterine arteries of pregnant compared with nonpregnant animals. In contrast, phenylephrine-mediated Ca(2+) sensitivity of MLC(20) phosphorylation was decreased in the uterine arteries of pregnant sheep. Simultaneous measurement of phenylephrine-stimulated tension and MLC(20) phosphorylation in the same tissue indicated a decrease in MLC(20) phosphorylation-independent contractions in the uterine arteries of pregnant sheep. In addition, activation of PKC produced significantly lower sustained contractions in uterine arteries of pregnant compared with nonpregnant animals in the absence of changes in MLC(20) phosphorylation levels in either vessels. In uterine arteries of nonpregnant sheep, the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase inhibitor PD-098059 significantly increased phenylephrine-mediated, MLC(20) phosphorylation-independent contractions. The results suggest that in uterine arteries, pregnancy upregulates alpha(1)-adrenoceptor-mediated Ca(2+) mobilization and MLC(20) phosphorylation. In contrast, pregnancy downregulates the Ca(2+) sensitivity of myofilaments, which is mediated by both thick- and thin-filament pathways.  相似文献   

3.
Regulation of smooth muscle contraction involves a number of signaling mechanisms that include both kinase and phosphatase reactions. The goal of the present study was to determine the role of one such kinase, phosphatidylinositol (PI)3-kinase, in vascular smooth muscle excitation-contraction coupling. Using intact medial strips of the swine carotid artery, we found that inhibition of PI3-kinase by LY-294002 resulted in a concentration-dependent decrease in the contractile response to both agonist stimulation and membrane depolarization-dependent contractions and a decrease in Ca(2+)-dependent myosin light chain (MLC) phosphorylation, the primary step in the initiation of smooth muscle contraction. Inhibition of PI3-kinase also depressed phorbol dibutyrate-induced contractions, which are not dependent on either Ca(2+) or MLC phosphorylation but are dependent on protein kinase C. To determine the Ca(2+)-dependent site of action of PI3-kinase, we determined the effect of several inhibitors of calcium metabolism on LY-294002-dependent inhibition of contraction. These inhibitors included nifedipine, SK&F-96365, and caffeine. Only SK&F-96365 blocked the LY-294002-dependent inhibition of contraction. Interestingly, all compounds blocked the LY-294002-dependent inhibition of MLC phosphorylation. Our results suggest that activation of PI3-kinase is involved in a Ca(2+)- and MLC phosphorylation-independent pathway for contraction likely to involve protein kinase C. In addition, our results also suggest that activation of PI3-kinase is involved in Ca(2+)-dependent signaling at the level of receptor-operated calcium channels.  相似文献   

4.
The purpose of the present study was to investigate the role and type of Ca2+ channels involved in the stimulatory effects of endothelin-1 (ET-1) on the Ca2+-dependent functional responses, p42/p44 MAP kinase phosphorylation, 20-kDa myosin light chain (MLC) phosphorylation and contraction, in rabbit iris sphincter, a nonvascular smooth muscle. ET-1 induced inositol phosphates production, MAP kinase phosphorylation, MLC phosphorylation (MLC20-P plus MLC20-2P) and contraction in a concentration-dependent manner with EC50 values of 71, 8, 6 and 25 nM, respectively. ET-1-induced MAP kinase phosphorylation, MLC phosphorylation and contraction were not significantly affected by nifedipine (1-60 microM), an L-type Ca2+ channel blocker, or by LOE 908 (1-100 microM), a blocker of Ca2+-permeable nonselective cation channels. However, SKF96365, a receptor-operated Ca2+ channel (ROCC) blocker, inhibited MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 28, 30 and 42 microM, respectively. 2-APB, a store-operated Ca2+ channel (SOCC) blocker, inhibited ET-1-induced MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 12.7 and 19 microM, respectively, but was without effect on MAP kinase phosphorylation. The combined effects of submaximal concentrations of SKF96365 and 2-APB on ET-1-induced MLC phosphorylation and contraction were not additive, implying that their inhibitory actions could be mediated through a common Ca2+ entry channel. PD98059, a MAP kinase inhibitor, had no effect on ET-1-induced MLC phosphorylation and contraction, suggesting that these ET-1 effects in the rabbit iris muscle are MAP kinase-independent. In conclusion, the present study demonstrated for the first time that in rabbit iris sphincter (a) ET-1, through the ETA receptor, stimulates MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner, (b) that these Ca2+-dependent functional responses are not significantly affected by nifedipine or LOE908, and (c) that ET-1-induced MLC phosphorylation and contraction are inhibited by SKF96365 and 2-APB, suggesting that these effects are mainly due to store- and/or receptor Ca2+ entry.  相似文献   

5.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

6.
The increase in intracellular Ca(2+) and myosin light chain (MLC) phosphorylation in response to the contractile activation of tracheal smooth muscle is greater at longer muscle lengths (21). However, MLC phosphorylation can also be stimulated by Ca(2+)-insensitive signaling pathways (19). The cytoskeletal proteins paxillin and focal adhesion kinase (FAK) mediate a Ca(2+)-independent length-sensitive signaling pathway in tracheal smooth muscle (30). We used alpha-toxin-permeabilized tracheal smooth muscle strips to determine whether the length sensitivity of MLC phosphorylation can be regulated by a Ca(2+)-insensitive signaling pathway and whether the length sensitivity of active tension depends on the length sensitivity of myosin activation. Although active tension remained length sensitive, ACh-induced MLC phosphorylation was the same at optimal muscle length (L(o)) and 0.5 L(o) when intracellular Ca(2+) was maintained at pCa 7. MLC phosphorylation was also the same at L(o) and 0.5 L(o) in strips stimulated with 10 microM Ca(2+). In contrast, the Ca(2+)-insensitive tyrosine phosphorylation of FAK and paxillin stimulated by ACh was higher at L(o) than at 0.5 L(o). We conclude that the length-sensitivity of MLC phosphorylation depends on length-dependent changes in intracellular Ca(2+) but that length-dependent changes in MLC phosphorylation are not the primary mechanism for the length sensitivity of active tension.  相似文献   

7.
Fang LH  Kwon SC  Zhang YH  Ahn HY 《FEBS letters》2002,512(1-3):282-286
This study was undertaken to determine the role of tyrosine kinase on intracellular Ca(2+) ([Ca(2+)](i)), myosin light chain (MLC) phosphorylation, and contraction caused by norepinephrine (NE) in rat aorta. NE induced a sustained contraction with an increase of [Ca(2+)](i). On the other hand, NE increased the phosphorylation of the 20 kDa MLC transiently. Pretreatment with genistein and tyrophostin 25, tyrosine kinase inhibitors, significantly inhibited NE-induced contraction, but did not affect the increase of [Ca(2+)](i) and MLC phosphorylation. These results suggest that tyrosine kinase may regulate the NE-mediated contraction without altering [Ca(2+)](i) and MLC phosphorylation in rat aorta.  相似文献   

8.
Smooth muscle contraction follows an increase in cytosolic Ca(2+) concentration, activation of myosin light chain kinase, and phosphorylation of the 20-kDa light chain of myosin at Ser(19). Several agonists acting via G protein-coupled receptors elicit a contraction without a change in [Ca(2+)](i) via inhibition of myosin light chain phosphatase and increased myosin phosphorylation. We showed that microcystin (phosphatase inhibitor)-induced contraction of skinned smooth muscle occurred in the absence of Ca(2+) and correlated with phosphorylation of myosin light chain at Ser(19) and Thr(18) by a kinase distinct from myosin light chain kinase. In this study, we identify this kinase as integrin-linked kinase. Chicken gizzard integrin-linked kinase cDNA was cloned, sequenced, expressed in E. coli, and shown to phosphorylate myosin light chain in the absence of Ca(2+) at Ser(19) and Thr(18). Subcellular fractionation revealed two distinct populations of integrin-linked kinase, including a Triton X-100-insoluble component that phosphorylates myosin in a Ca(2+)-independent manner. These results suggest a novel function for integrin-linked kinase in the regulation of smooth muscle contraction via Ca(2+)-independent phosphorylation of myosin, raise the possibility that integrin-linked kinase may also play a role in regulation of nonmuscle motility, and confirm that integrin-linked kinase is indeed a functional protein-serine/threonine kinase.  相似文献   

9.
The adaptation of contractile mechanisms of the uterine artery to pregnancy is not fully understood. The present study examined the effect of pregnancy on the uterine artery baseline Ca2+ sensitivity. In beta-escin-permeabilized arterial preparations, Ca2+ -induced concentration-dependent contractions were significantly decreased in uterine arteries from pregnant animals compared with those of nonpregnant animals. Time-course studies showed that Ca2+ increased phosphorylation of 20-kDa myosin light chain (MLC20), which preceded the tension development in vessels from both pregnant and nonpregnant animals. When compared with vessels from nonpregnant animals, there was a significant increase in the protein level of MLC20 and an accordance increase in the level of Ca2+ -induced phosphorylated MLC20 (MLC20-P) in uterine arteries during pregnancy. Simultaneous measurements of MCL20-P levels and contractions stimulated with Ca2+ in the same tissues demonstrated a significant attenuation in the tension-to-MLC20-P ratio in uterine arteries during pregnancy. Activation of PKC with phorbol 12,13-dibutyrate (PDBu) potentiated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. Accordingly, inhibition of PKC attenuated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. PDBu produced contractions in the presence or absence of Ca2+ in the beta-escin-permeabilized arteries, which were significantly decreased in uterine arteries from pregnant compared with nonpregnant animals. The results suggest that pregnancy upregulates the thick-filament regulatory pathway by increasing MLC20 phosphorylation but downregulates the thin-filament regulatory pathway by decreasing the contractile sensitivity of MLC20-P, resulting in attenuated baseline Ca2+ sensitivity in the uterine artery. In addition, PKC plays an important role in the regulation of basal Ca2+ sensitivity, which is downregulated during pregnancy.  相似文献   

10.
We previously reported that induction of acute experimental esophagitis by repeated perfusion of HCl may affect release of intracellular Ca(2+) stores. We therefore measured cytosolic Ca(2+) in response to a maximally effective dose of ACh in fura 2-AM-loaded lower esophageal sphincter (LES) circular muscle cells and examined the contribution of H(2)O(2) to the reduction in Ca(2+) signal. In normal cells, the ACh-induced Ca(2+) increase was the same in normal-Ca(2+) and Ca(2+)-free medium and was abolished by the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C inhibitor U-73122, confirming that the initial ACh-induced contraction depends on Ca(2+) release from intracellular stores through production of inositol trisphosphate. In LES cells, the ACh-induced Ca(2+) increase in normal-Ca(2+) medium was significantly lower in esophagitis than in normal cells and was further reduced ( approximately 70%) when the cells were incubated in Ca(2+)-free medium. This reduction was partially reversed by the H(2)O(2) scavenger catalase. H(2)O(2) measurements in LES circular muscle showed significantly higher levels in esophagitis than in normal cells. When normal LES cells were incubated with H(2)O(2), the ACh-induced Ca(2+) increase was significantly reduced in normal-Ca(2+) and Ca(2+)-free medium and was similar to that observed in animals with esophagitis. The initial ACh-induced contraction was also reduced in normal cells incubated with H(2)O(2). H(2)O(2), when applied to cells at sufficiently high concentration, produced a visible and prolonged Ca(2+) signal in normal cells. H(2)O(2)-induced cell contraction was also sensitive to depletion of stores by thapsigargin (TG); conversely, H(2)O(2) reduced TG-induced contraction, suggesting that TG and H(2)O(2) may operate through similar mechanisms. Ca(2+)-ATPase activity measurement indicates that H(2)O(2) and TG reduced Ca(2+)-ATPase activity, confirming similarity of mechanism of action. We conclude that H(2)O(2) may be at least partly responsible for impairment of Ca(2+) release in acute experimental esophagitis by inhibiting Ca(2+) uptake and refilling Ca(2+) stores.  相似文献   

11.
Smooth muscle contraction is initiated by myosin light chain (MLC) phosphorylation catalyzed by the Ca(2+) dependent MLC kinase. However, many aspects of smooth muscle contraction cannot be accounted for by MLC phosphorylation. One hypothesis that has received experimental support involves the thin filament protein caldesmon. Caldesmon inhibits myosin ATPase activity; phosphorylation of caldesmon relieves this inhibitory effect. The primary candidates for catalysis of caldesmon phosphorylation are the p42/p44 ERK MAP kinases. However, we and others have shown that inhibition of the ERK MAP kinases has no effect on many smooth muscles. The goal of this study was to determine if evidence for a second endogenous caldesmon kinase may be obtained. We used Triton X-100 skinned and intact tissues of the swine carotid artery to address this goal. Caldesmon phosphorylation was evident in resting and Ca(2+) stimulated Triton X-100 skinned fibers. Ca(2+)-dependent caldesmon phosphorylation was partially sensitive to the ERK MAP kinase inhibitor PD98059, whereas all caldesmon phosphorylation was sensitive to the general kinase inhibitor, staurosporine. Histamine increased caldesmon phosphorylation levels in intact swine carotid artery, which was sensitive to both PD98059 and staurosporine. Histamine increased ERK MAP kinase activity, which was reversed by PD98059, staurosporine, and EGTA. Histamine-induced contractions were inhibited by staurosporine but not by PD98059. We interpret these results to suggest that although ERK MAP kinases catalyze caldesmon phosphorylation, a second staurosporine sensitive kinase is also important in caldesmon phosphorylation and it is this pathway that may be more important in contractile regulation.  相似文献   

12.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

13.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

14.
The present study tests the hypothesis that age-related changes in patterns of agonist-induced myofilament Ca(2+) sensitization involve corresponding differences in the relative contributions of thick- and thin-filament regulation to overall myofilament Ca(2+) sensitivity. Posterior communicating cerebral arteries from term fetal and nonpregnant adult sheep were used in measurements of cytosolic Ca(2+), myosin light chain (MLC) phosphorylation, and contractile tensions induced by varying concentrations of K(+) or serotonin [5-hydroxytryptamine (5-HT)]. The results were used to assess the relative contributions of the relationships between cytosolic Ca(2+) and MLC phosphorylation (thick-filament reactivity), along with the relationships between MLC phosphorylation and contractile tension (thin-filament reactivity), to overall myofilament Ca(2+) sensitivity. For K(+)-induced contractions, both fetal and adult arteries exhibited similar basal myofilament Ca(2+) sensitivity. Despite this similarity, thick-filament reactivity was greater in fetal arteries, whereas thin-filament reactivity was greater in adult arteries. In contrast, 5-HT-induced contractions exhibited increased myofilament Ca(2+) sensitivity compared with K(+)-induced contractions for both fetal and adult cerebral arteries, and the magnitude of this effect was greater in fetal compared with adult arteries. When interpreted together with our previous studies of 5-HT-induced myofilament Ca(2+) sensitization, we attributed the present effects to agonist enhancement of thick-filament reactivity in fetal arteries mediated by G protein receptor activation of a PKC-independent but RhoA-dependent pathway. In adult arteries, agonist stimulation enhanced thin-filament reactivity was also probably mediated through G protein-coupled activation of RhoA-dependent and PKC-independent mechanisms. Overall, the present data demonstrate that agonist-enhanced myofilament Ca(2+) sensitivity can be partitioned into separate thick- and thin-filament effects, the magnitudes of which are different between fetal and adult cerebral arteries.  相似文献   

15.
El-Toukhy A  Given AM  Ogut O  Brozovich FV 《FEBS letters》2006,580(24):5779-5784
In avian smooth muscles, GTPgammaS produces a Rho kinase mediated increase in PHI-1 phosphorylation and force, but whether this correlation is causal is unknown. We examined the effect of phosphorylated PHI-1 (P-PHI-1) on force and myosin light chain (MLC(20)) phosphorylation at a constant [Ca(2+)]. P-PHI-1, but not PHI-1, increased MLC(20) phosphorylation and force, and phosphorylation of PHI-1 increased the interaction of PHI-1 with PP1c. Microcystin induced a dose-dependent reduction in the binding of PHI-1 to PP1c. These results suggest PHI-1 inhibits myosin light chain phosphatase by interacting with the active site of PP1c to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force.  相似文献   

16.
Both protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) are involved in mediating vascular smooth muscle contraction. We tested the hypotheses that in addition to PKC activation of ERK1/2, by negative feedback ERKs modulate PKC-induced contraction, and that their interactions modulate both thick and thin myofilament pathways. In ovine middle cerebral arteries (MCA), we measured isometric tension and intracellular free calcium concentration ([Ca(2+)](i)) responses to PKC stimulation [phorbol 12,13-dibutyrate (PDBu), 3 x 10(-6) M] in the absence or presence of ERK1/2 inhibition (U-0126, 10(-5) M). After PDBu +/- ERK1/2 inhibition, we also examined by Western immunoblot the levels of total and phosphorylated ERK1/2, caldesmon(Ser789), myosin light chain(20) (MLC(20)), and CPI-17. PDBu induced significant increase in tension in the absence of increased [Ca(2+)](i). PDBu also increased phosphorylated ERK1/2 levels, a response blocked by U-0126. In turn, U-0126 augmented PDBu-induced contractions. PDBu also was associated with significant increases in phosphorylated caldesmon(Ser789) and MLC(20) levels, each of which peaked at 5 to 10 min. PDBu also increased phosphorylated CPI-17 levels, which peaked at 2 to 3 min. Rho kinase inhibition (Y-27632, 3 x 10(-7) M) did not alter PDBu-induced contraction. These results support the idea that PKC activation can increase CPI-17 phosphorylation to decrease myosin light chain phosphatase activity. In turn, this increases MLC(20) phosphorylation in the thick filament pathway and increases Ca(2+) sensitivity. In addition, ERK1/2-dependent phosphorylation of caldesmon(Ser789) was not necessary for PDBu-induced contraction and appears not to be involved in the reversal of caldesmon's inhibitory effect on actin-myosin ATPase.  相似文献   

17.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

18.
Myosin light chain phosphatase (MLCP) plays a pivotal role in smooth muscle contraction by regulating Ca(2+) sensitivity of myosin light chain phosphorylation. A smooth muscle phosphoprotein called CPI-17 specifically and potently inhibits MLCP in vitro and in situ and is activated when phosphorylated at Thr-38, which increases its inhibitory potency 1000-fold. We produced a phosphospecific antibody for this site in CPI-17 and used it to study in situ phosphorylation of endogenous CPI-17 in arterial smooth muscle in response to agonist stimulation. In the intact femoral artery, CPI-17 phosphorylation was negligible at the resting state and was not increased during contraction induced by K(+) depolarization. The Ca(2+)-sensitizing agonists histamine and phenylephrine induced nearly equivalent contractions, but histamine generated significantly higher levels of CPI-17 phosphorylation. In alpha-toxin-permeabilized strips at pCa 6.7, contractile force and CPI-17 phosphorylation were proportional in response to histamine, guanosine 5'-O-(gamma-thiotriphosphate), and histamine plus guanyl-5'-yl thiophosphate, implying that histamine increased CPI-17 phosphorylation through activation of G proteins. Inhibitors of Rho-kinase (Y27632) and protein kinase C (PKC; GF109203X) reduced contraction and CPI-17 phosphorylation in parallel, suggesting that CPI-17 functions downstream of Rho kinases and PKC. The results show that agonists such as histamine signal through phosphorylation of CPI-17 to produce Ca(2+) sensitization of smooth muscle contraction.  相似文献   

19.
Studies of oxytocin-induced phosphorylation of myosin light chain (MLC), resulting in myometrial contraction, suggest that extracellular Ca(2+) influx is involved in its signal transduction. To explore the possibility that intracellular Ca(2+) mobilization by oxytocin may also contribute to MLC phosphorylation, we investigated the relative contributions of these Ca(2+) sources to oxytocin signal transduction in myometrium of pregnant rat. In pregnant rat myometrium, oxytocin-induced Ca(2+) influx occurs via an L-type voltage-dependent Ca(2+) channel. Treatment with verapamil, an antagonist specific for these channels, significantly diminished MLC phosphorylation observed in response to oxytocin administration without affecting the release of Ca(2+) from intracellular Ca(2+) stores. Furthermore, oxytocin-induced MLC phosphorylation was not observed when extracellular Ca(2+) was not present. Our results clearly indicate that extracellular Ca(2+) influx, rather than release from Ca(2+) storage sites, is essential for oxytocin-induced MLC phosphorylation.  相似文献   

20.
Activation of smooth muscle myosin light-chain kinase (MLCK) causes contraction. Here we have proven that MLCK controls Ca2+ entry (CE) in endothelial cells (ECs): MLCK antisense oligonucleotides strongly prevented bradykinin (BK)- and thapsigargin (TG)-induced endothelial Ca2+ response, while MLCK sense did not. We also show that the relevant mechanism is not phosphorylation of myosin light-chain (MLC): MLC phosphorylation by BK required CE, but MLC phosphorylation caused by the phosphatase inhibitor calyculin A did not trigger Ca2+ response. Most important, we provide for the first time strong evidence that, in contrast to its role in smooth muscle cells, activation of MLCK in ECs stimulates the production of important endothelium-derived vascular relaxing factors: MLCK antisense and MLCK inhibitors abolished BK- and TG-induced nitric oxide production, and MLCK inhibitors substantially inhibited acetylcholine-stimulated hyperpolarization of smooth muscle cell membrane in rat mesenteric artery. These results indicate that MLCK controls endothelial CE, but not through MLC phosphorylation, and unveils a hitherto unknown physiological function of the enzyme: vasodilation through its action in endothelial cells. The study discovers a counter-balancing role of MLCK in the regulation of vascular tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号