首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

The enzyme, thyroid peroxidase (TPO), is a dominant antigen in thyroid autoimmune diseases. Autoantibodies recognised two major dominant conformational epitopes termed A and B. The epitopes have been defined by mAbs, but the amino acid residues which constitute these determinants remain unknown. Using a model of TPO, built from the structure of myeloperoxidase (MPO), we have synthesised peptides corresponding to exposed loops and generated rabbit antibodies to the peptides.

Antisera to peptide sequence 599–617 (peptide 14) representing a highly protrusive loop on the TPO, showed the highest inhibition in 65 sera from patients positive with anti-TPO antibodies. The inhibition was by 15–80% (mean 41%), and no other antibody showed any inhibition. Binding of hFabs to the B determinant on TPO was inhibited by anti-peptide 14 antibodies more then 85%, but not Fabs to the A determinant. In conclusion, the peptide 14 defines a sequence taking part in building up the B major conformational epitope.

None of generated anti-peptide antibodies alone inhibited the binding of human Fabs to the A epitope, however a combination of four anti-peptide antibodies (P1, P12, P14 and P18) inhibits Fabs binding to the A determinant by more then 60% and autoantibodies binding from 65% to 94%. Combination of antibodies reacting with peptides outside the surface defined by those four anti-peptide antibodies did not give any inhibition of Fabs to TPO.

The inhibition of Fabs and auto Abs to TPO by this combination of anti-peptide Abs is the result of steric hindrance as none of these Abs individually inhibited auto Abs' or Fabs' binding to TPO.

The four peptides define an area on the enzyme surface where the A and B major conformational epitopes are localised.  相似文献   

2.
Trastuzumab is a growth-inhibitory humanized Ab targeting the oncogenic protein HER-2/neu. Although trastuzumab is approved for treatment of advanced breast cancer, a number of concerns exist with passive immunotherapy. Treatment is expensive and has a limited duration of action, necessitating repeated administrations of the mAb. Active immunotherapy with conformational B cell epitopes affords the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide Abs. The three-dimensional structure of human HER-2 in complex with trastuzumab reveals that the Ag-binding region of HER-2 spans residues 563-626 that comprises an extensive disulfide-bonding pattern. To delineate the binding region of HER-2, we have designed four synthetic peptides with different levels of conformational flexibility. Chimeric peptides incorporating the measles virus fusion "promiscuous" T cell epitope via a four-residue linker sequence were synthesized, purified, and characterized. All conformational peptides were recognized by trastuzumab and prevented the function of trastuzumab inhibiting tumor cell proliferation, with 563-598 and 597-626 showing greater reactivity. All epitopes were immunogenic in FVB/N mice with Abs against 597-626 and 613-626 recognizing HER-2. The 597-626 epitope was immunogenic in outbred rabbits eliciting Abs which recognized HER-2, competed with trastuzumab for the same epitope, inhibited proliferation of HER-2-expressing breast cancer cells in vitro and caused their Ab-dependent cell-mediated cytotoxicity. Moreover, immunization with the 597-626 epitope significantly reduced tumor burden in transgenic BALB-neuT mice. These results suggest the peptide B cell immunogen is appropriate as a vaccine for HER-2-overexpressing cancers because the resulting Abs show analogous biological properties to trastuzumab.  相似文献   

3.
The tumour-associated antigen (TAA) GA733-2 is overexpressed by >90% of human colorectal carcinomas (CRC). The antigen has previously been shown to be recognised by B and T cells. The aim of the present study was to define B cell epitopes of GA733-2. Fifteen percent of CRC patients with no previous immunotherapy have recently been shown to elicit an anti-GA733-2 IgG antibody response. Sera of these patients ( n=136) were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies against 23 partly overlapping synthetic peptides (18 amino acids: aa) derived from the extracellular domain of GA733-2. An 18-aa long sequence at the N-terminal region of the antigen (peptide 2) was found to be an immunodominant B cell epitope. Fifty percent of the patients had antibodies against peptide 2, while 8% to 9% had antibodies against peptides 1, 4, 7, 8 or 20. In healthy donors ( n=30) antibodies against peptides 2 and 8 were also detected in 13% and 3% of cases respectively, while no antibodies were found against the other peptides and the complete protein. Thirteen percent of CRC patients ( n=30) with no IgG antibodies against the GA733-2 antigen elicited antibodies against peptide 2. The specificity of peptide-reactive sera was verified by inhibition ELISA. The binding of sera to GA733-2 was significantly inhibited by peptides to which CRC sera bound, but not by control peptides. Binding to peptide 2 of sera showing both peptide 2 and GA733-2 reactivity was specifically inhibited by the complete GA733-2 antigen, while binding of peptide 2-reactive sera showing no GA733-2 reactivity was not inhibited. CRC sera interfered with the binding of monoclonal antibody (mAb) 17-1A and mAb C215 that recognise distinct epitopes of GA733-2. No significant correlation was found between the presence of anti-peptide antibodies in CRC patients and clinical stage or overall survival. The results provide additional evidence for immune recognition of CRC by the host.  相似文献   

4.
To circumvent autoimmune oophoritis after immunization with zona pellucida (ZP) glycoproteins, synthetic peptides encompassing B cell epitope(s) and devoid of oophoritogenic T cell epitopes as immunogens have been proposed. In this study, bonnet monkey (Macaca radiata) ZP glycoprotein-B (bmZPB) was expressed as polyhistidine fusion protein in Escherichia coli. Rabbit polyclonal antibodies against recombinant bmZPB (r-bmZPB) significantly inhibited human sperm-oocyte binding. To map B cell epitopes on ZPB, a panel of 7 murine monoclonal antibodies (mAbs) was generated against r-bmZPB. All 7 mAbs, when tested in an indirect immunofluorescence assay, reacted with bonnet monkey ZP, and only 6 recognized human zonae. Monoclonal antibodies MA-809, -811, -813, and -825 showed significant inhibition in the binding of human spermatozoa to human ZP in a hemizona assay. Epitope-mapping studies using multipin peptide synthesis strategy revealed that these 4 mAbs recognized a common epitope corresponding to amino acids (aa) 136-147 (DAPDTDWCDSIP). Competitive binding studies revealed that the synthetic peptide corresponding to the identified epitope (aa 136-147) inhibited the binding of MA-809, -811, -813, and -825 to r-bmZPB in an ELISA and to bonnet monkey ZP in an indirect immunofluorescence assay. The epitopic domain corresponding to aa 136-147 of bmZPB was completely conserved in human ZPB. These studies will further help in designing ZP-based synthetic peptide immunogens incorporating relevant B cell epitope for fertility regulation in humans.  相似文献   

5.
Vaccines based on peptide mimics (mimotopes) of conformational tumor antigen epitopes have been investigated for a variety of human tumors including breast cancer, tumors expressing the carcinoembryonic antigen, B cell lymphoma, neuroblastoma, and melanoma. In our previous work, we designed a vaccine based on a mimotope of the high molecular weight-melanoma associated antigen (HMW-MAA) that elicited HMW-MAA-specific antibodies (Abs) with anti-tumor activity in vitro and in vivo. In this study, we aimed to identify mimotopes of additional distinct HMW-MAA epitopes, since they could be used to construct a polymimotope melanoma vaccine. For this purpose, random peptide phage libraries were screened with the anti-HMW-MAA monoclonal antibodies (mAbs) VT80.12 and VF1-TP43 yielding one peptide ligand for each mAb. Both peptides inhibited the binding of the corresponding mAb to the HMW-MAA. Furthermore, when coupled to the carrier protein keyhole limpet hemocyanin (KLH), both HMW-MAA mimotopes elicited peptide-specific Abs in rabbits or BALB/c mice, but only the mimotope isolated with the mAb VT80.12 elicited HMW-MAA-specific Abs and only in mice. However, the latter Abs had no detectable effect on HMW-MAA expressing human melanoma cells in vitro. These results describe limitations related to the phage display technique and emphasize the need to characterize the functional properties of the mAb utilized to isolate mimotopes of the corresponding epitopes.  相似文献   

6.
The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.  相似文献   

7.
Cryptococcus neoformans causes a life-threatening meningoencephalitis in a significant percentage of AIDS patients. Mice immunized with a glycoconjugate vaccine composed of the glucuronoxylomannan (GXM) component of the cryptococcal capsular polysaccharide conjugated to tetanus toxoid (TT) produce Abs that, based on the epitope recognized, can be either protective or nonprotective. Since nonprotective Abs block the efficacy of protective Abs, we are interested in developing a vaccine that would focus the immune response specifically to protective epitopes. Previously, we screened a phage display library with 2H1, a protective anti-GXM mAb, and isolated PA1, a representative peptide that had a K(d) of 295 nM for 2H1. Mice immunized with PA1 conjugated to keyhole limpet hemocyanin developed high anti-peptide (1/13,000), but low anti-GXM (maximum, 1/200) titers. We now report our efforts to improve this vaccine by screening a sublibrary with six random amino acids added to either end of the PA1 motif to identify higher affinity peptides. P206.1, a peptide isolated from this sublibrary, had 80-fold higher affinity for 2H1 (K(d) = 3.7 nM) than PA1. P206.1 bound protective, but not nonprotective, anti-GXM Abs. Mice immunized with P206.1 conjugated to various carriers did not mount an Ab response to GXM despite developing high anti-peptide titers. However, mice primed with GXM-TT and boosted with P206.1-TT developed significant anti-GXM titers (maximum, 1/180,000). This latter immunization scheme focused the immune response on protective epitopes, since only 2-5% of these titers were directed against nonprotective de-O-acetylated GXM epitopes compared with 20-60% in animals primed and boosted with GXM-TT.  相似文献   

8.
Autoantibodies directed against spliceosomal heterogeneous nuclear ribonucleoproteins (hnRNPs) are a typical feature of rheumatoid arthritis, systemic lupus erythematosus, and mixed-connective tissue disease. With the aim of investigating a potential pathogenic role of these Abs, we have studied the Ab response to A2/B1 hnRNPs in different murine models of lupus. The specificity of anti-A2/B1 Abs was tested with a series of 14 overlapping synthetic peptides covering the region 1-206 of A2 that contains most of the epitopes recognized by patients' Abs. A major epitope recognized very early during the course of the disease by Abs from most of MRL lpr/lpr mice but not from other lupus mice and from mice of different MHC haplotypes immunized against B1 was identified in residues 50-70. This peptide contains a highly conserved sequence RGFGFVTF also present in other hnRNPs and small nuclear ribonucleoproteins. Abs reacting with a second A2 epitope identified in residues 35-55 were detectable several weeks later, suggesting an intramolecular B cell epitope spreading during the course of the disease. We identified several T cell epitopes within the region 35-175 that generated an effective Th cell response with IL-2 and IFN-gamma secretion in nonautoimmune CBA/J mice sharing the same MHC haplotype H-2k as MRL/lpr mice. None of the peptides stimulated T cells primed in vivo with B1. Because Abs to peptide 50-70 were detected significantly earlier than Abs reacting with other A2 peptides and the protein itself, it is possible that within the protein, this segment contains residues playing an initiator role in the induction of the anti-A2/B1 and antispliceosome Ab response.  相似文献   

9.
A solid-phase 8-mer random combinatorial peptide library was used to generate a panel of mimotopes of an epitope recognized by a monoclonal antibody to the F protein of measles virus (MV). An inhibition immunoassay was used to show that these peptides were bound by the monoclonal antibody with different affinities. BALB/c mice were coimmunized with the individual mimotopes and a T-helper epitope peptide (from MV fusion protein), and the reactivity of the induced anti-mimotope antibodies with the corresponding peptides and with MV was determined. The affinities of the antibodies with the homologous peptides ranged from 8.9 x 10(5) to 4.4 x 10(7) liters/mol. However, only one of the anti-mimotope antibodies cross-reacted with MV in an enzyme-linked immunosorbent assay and inhibited MV plaque formation. Coimmunization of mice with this mimotope and the T-helper epitope peptide induced an antibody response which conferred protection against fatal encephalitis induced following challenge with MV and with the structurally related canine distemper virus. These results indicate that peptide libraries can be used to identify mimotopes of conformational epitopes and that appropriate immunization with these mimotopes can induce protective antibody responses.  相似文献   

10.
Antibodies highly selective for two functionally distinct regions of diphtheria toxin (DTx) were prepared using synthetic peptide conjugates as immunogens. Three peptides were selected for synthesis: sequence DTx141-157 on fragment A, which contains the putative protein elongation factor (EF-2) ADP-ribosyltransferase site; DTx224-237 on fragment B, selected on the basis of forming a predicted surface loop; and DTx513-526 on fragment B, forming a part of the region containing the putative receptor binding domain. All of the anti-peptide antibodies recognized the corresponding peptide, and also reacted with the toxin, specifically with the fragment containing the sequence against which they were raised, confirming the utility of this approach in generating fragment-specific antibodies. The anti-peptide antibody with the highest binding titre both to the peptide and to the native toxin was the one prepared against the sequence with the highest surface and loop likelihood indices of the three peptides selected. The similarity of the reactivity profiles with peptide and native and denatured toxin is consistent with the prediction that the region selected occurs in a surface loop and that the structure of the peptide is similar to the conformation of this region in the native protein. The epitopes for two of the anti-peptide antibodies were mapped. The results indicated that even though the antisera were raised to peptides containing 14 amino acids (aa) they were directed predominantly against a narrow region within the peptide, consisting of only 5-6 aa residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Epitopes associated with a synthetic hepatitis B surface antigen peptide   总被引:5,自引:0,他引:5  
A synthetic peptide (SP1), corresponding to the amino acid residues 122 through 137 of the major polypeptide derived from hepatitis B surface antigen (HBsAg), subtype ayw, was analyzed for the presence of the major epitopes of HBsAg. Both a cyclic form, produced by introduction of an intrachain disulfide bond, and a linear form of the peptide were characterized. A panel of monoclonal antibodies with defined specificity for the cross-reactive group a antigenic determinant(s) and for the y and w subtype specificities was used for this analysis. The cyclic, but not the linear, form of SP1 reacted with five of 14 anti-a monoclonal antibodies, demonstrating that the cyclic peptide contains a conformation-dependent a epitope. Only one anti-a antibody was found to react with both cyclic and linear forms of SP1. Because SP1 failed to react with the remaining 8 anti-a monoclonal antibodies, it was concluded that the a antigenic reactivity associated with HBsAg contains an additional epitope(s) unrelated to that expressed on SP1. Both cyclic and linear SP1 reacted with three of three anti-y monoclonal antibodies, indicating that a sequential y epitope is also present on SP1; no w reactivity was detected. Analysis of the idiotypes associated with the monoclonal antibodies showed those that combined with cyclic SP1 also inhibited the binding of a common human anti-HBs (CHBs) idiotype with its rabbit anti-idiotype serum, whereas a monoclonal antibody that did not react with the cyclic SP1 epitope failed to inhibit the CHBs idiotype-anti-idiotype reaction. Thus, the conformational a epitope present on cyclic SP1 appears to contain the predominant epitope recognized by humans in response to a natural HBV infection.  相似文献   

12.
Type 1 diabetes is a T cell-mediated disease in which B cells serve critical Ag-presenting functions. In >95% of type 1 diabetic patients the B cell response to the glutamic acid decarboxylase 65 (GAD65) autoantigen is exclusively directed at conformational epitopes residing on the surface of the native molecule. We have examined how the epitope specificity of Ag-presenting autoimmune B cell lines, derived from a type 1 diabetic patient, affects the repertoire of peptides presented to DRB1*0401-restricted T cell hybridomas. The general effect of GAD65-specific B cells was to enhance Ag capture and therefore Ag presentation. The enhancing effect was, however, restricted to T cell determinants located outside the B cell epitope region, because processing/presentation of T cell epitopes located within the autoimmune B cell epitope were suppressed in a dominant fashion. A similar effect was observed when soluble Abs formed immune complexes with GAD65 before uptake and processing by splenocytes. Thus, GAD65-specific B cells and the Abs they secrete appear to modulate the autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominant area while boosting epitopes in distant or cryptic regions.  相似文献   

13.
Filamentous phage random peptide libraries were used to identify the epitopes of Burkholderia pseudomallei protease by panning against IgG polyclonal sera that exhibited protease neutralizing properties. The isolated fusion peptides presented a consensus peptide sequence, TKSMALSG, which closely resembles part of the active site sequence, 435GTSMATPHVAG445, of B. pseudomallei serine metalloprotease. By comparing the consensus sequence, TKSMALSG, with the predicted three-dimensional molecular model of B. pseudomallei serine metalloprotease, it appears that the potential antibody binding epitope was buried within the molecule. This active site was conformational whereby one continuous sub-region (SMA) was located between two discontinuous sub-regions, supplied by the flanking residues in the same polypeptide. All phages selected from the biopanning with IgG polyclonal sera showed good binding towards the polyclonal antibodies when compared to the negative control. In addition, these peptide-bearing phages showed competitive inhibition of B. pseudomallei serine metalloprotease binding to the polyclonal IgG.  相似文献   

14.
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs.  相似文献   

15.
传染性法氏囊病病毒五个抗原表位短肽的鉴定与序列分析   总被引:1,自引:0,他引:1  
以5株传染性法氏囊病病毒(Infectious bursal disease virus,IBDV)单克隆抗体HNF1、HNF7、B34、2B1和2G8作为筛选分子,对噬菌体展示12肽库进行3轮"吸附-洗脱-扩增"淘洗,从每株单克隆抗体筛选到的噬菌斑中随机挑取12个单克隆蓝色噬菌斑,合计60个,用间接ELISA检测,A值大于1.00;用竞争抑制ELISA分析,单克隆抗体和IBDV抗原均能竞争抑制筛选12肽与固相包被单克隆抗体的反应,抑制率大于40%,表明在该12肽内含有IBDV抗原表位。选取35个单克隆噬菌斑,测定噬菌体gIII部分基因的核苷酸序列,确定了这5个含有不同IBDV抗原表位12肽的核苷酸和氨基酸序列。进一步将其与GenBank中IBDV基因组编码蛋白的氨基酸序列进行比较,发现2B1筛选肽有4个连续氨基酸残基Leu-Ala-Ser-Pro与IBDV基因组A片段编码多聚蛋白的第536-599氨基酸残基一致,推测2B1为线性表位;而HNF1、HNF7、B34和2G8筛选肽均没找到有3个以上连续氨基酸残基与IBDV蛋白序列相同之处,推测可能是构象依赖性表位。  相似文献   

16.
Monoclonal antibody 57P, which was raised against tobacco mosaic virus protein, cross-reacts with a peptide corresponding to residues 134-146 of this protein. Previous studies using peptide variants suggested that the peptide in the antibody combining site adopts a helical configuration that mimics the structure in the protein. In this study, we carried out a detailed comparison of Fab-peptide and Fab-protein interactions. The same five amino acid substitutions were introduced in the peptide (residues 134-151) and the parent protein, and the effect of these substitutions on antibody binding parameters have been measured with a Biacore instrument. Fabs that recognize epitopes located away from the site of mutations were used as indirect probes for the conformational integrity of protein antigens. Their interaction kinetics with all proteins were similar, suggesting that the substitutions had no drastic effect on their conformation. The five substitutions introduced in the peptide and the protein had minor effects on association rate constants (ka) and significant effects on dissociation rate constants (kd) of the antigen-Fab 57P interactions. In four out of five cases, the effect on binding affinity of the substitutions was identical when the epitope was presented in the form of a peptide or a protein antigen, indicating that antibody binding specifity was not affected by epitope presentation. However, ka values were about 10 times larger and kd values about 5 times larger for the peptide-Fab compared to the protein-Fab interaction, suggesting a different binding mechanism. Circular dichroism measurements performed for three of the peptides showed that they were mainly lacking structure in solution. Differences in conformational properties of the peptide and protein antigens in solution and/or in the paratope could explain differences in binding kinetics. Our results demonstrate that the peptides were able to mimic correctly some but not all properties of the protein-Fab 57P interaction and highlight the importance of quantitative analysis of both equilibrium and kinetic binding parameters in the design of synthetic vaccines and drugs.  相似文献   

17.
We tested the hypothesis that stabilizing α-helix of Epstein–Barr virus gH-derived peptide 11438 used for binding human cells will increase its biological activity. Non-stable α-helix of peptide 11438 was unfolded in an entropy-driven process, despite the opposing effect of the enthalpy factor. Adding and/or changing amino acids in peptide 11438 allowed the designing of peptides 33207, 33208 and 33210; peptides 33208 and 33210 displayed higher helical content due to a decreased unfolding entropy change as was determined by AGADIR, molecular dynamics and circular dichroism analysis. Peptides 33207, 33208 and 33210 inhibited EBV invasion of peripheral blood mononuclear cells and displayed epitopes more similar to native protein than peptide 11438; these peptides could be useful for detecting antibodies induced by native gH protein since they displayed high reactivity with anti-EBV antibodies. Anti-peptide 33207 antibodies showed higher reactivity with EBV than anti-peptide 11438 antibodies being useful for inducing antibodies against EBV. Anti-peptide 33210 antibodies inhibit EBV invasion of epithelial cells better than anti-peptide 11438 antibodies. Peptide 33210 bound to normal T lymphocytes and Raji cells stronger than peptide 11438 and also induced apoptosis of monocytes and Raji cells but not of normal T cells in a similar way to EBV-gH. Peptide 33210 inhibited the monocytes’ development toward dendritic cells better than EBV and peptide 11438. In conclusion, stabilizing the α-helix in peptides 33208 and 33210 designed from peptide 11438 increased the antigenicity and the ability of the antibodies induced by peptides of inhibiting EBV invasion of host cells.  相似文献   

18.
All of the 181 possible overlapping hexapeptides as well as 179 octapeptides covering the amino acid sequence of human dihydrofolate reductase (hDHFR) were synthesized on polyethylene supports. The synthetic procedure of Geysen et al. (Geysen, H. M., Rodda, S. J., Mason, T. J., Tribbick, G., and Schoofs, P. G. (1987) J. Immunol. Methods 102, 259-274) was modified to obtain up to 100 nmol of peptide on each pin. Peptides constituting antigenic epitopes on hDHFR were identified by examining the binding of antibodies raised against both native and denatured hDHFR to these peptides by enzyme-linked immunosorbent assay. The peptides bound in a similar pattern to polyclonal antibodies against both native and denatured dihydrofolate reductase (DHFR). Six major epitopes were located corresponding to residues 27-33, 45-51, 67-74, 133-139, 153-158, and 176-181 using both hexapeptides and octapeptides. An additional epitope, constituting residues 14-21, was found by the use of octapeptides. Most of the epitopes are hydrophilic and reside largely in "loop" regions at the boundaries of secondary structural elements of hDHFR. This observation is consistent with our previous results which suggested that ligand binding at the active site of the enzyme can cause a dramatic reduction in antibody binding to DHFR due to conformational constraints in flexible loop regions in various parts of the molecule. The similarity of the immunogenic profiles of native versus denatured hDHFR indicates that the two forms of the antigen share the same amino acid sequence-specific epitopes. Competitive enzyme-linked immunosorbent assay showed that the binding of anti-hDHFR antiserum to both native and denatured hDHFR was inhibited by approximately 30% by the seven antigenic peptides, indicating that a significant proportion of the antibodies elicited by this enzyme is specific for short peptides. Besides revealing the antigenic structure of DHFR our results provide a rational basis for the design of mutant DHFRs to study the importance of loop residues in the conformational dynamics of the enzyme.  相似文献   

19.
We examine the etiological basis of hierarchical immunodominance of B cell epitopes on a multideterminant Ag. A model T-dependent immunogen, containing a single immunodominant B cell epitope, was used. The primary IgM response to this peptide included Abs directed against diverse determinants presented by the peptide. Interestingly, affinity of individual monomeric IgM Abs segregated around epitope recognized and was independent of their clonal origins. Furthermore, affinity of Abs directed against the immunodominant epitope were markedly higher than that of the alternate specificities. These studies suggested that the affinity of an epitope-specific primary response, and variations therein, may be determined by the chemical composition of epitope. This inference was supported by thermodynamic analyses of monomer IgM binding to Ag, which revealed that this interaction occurs at the expense of unfavorable entropy changes. Permissible binding required compensation by net enthalpic changes. Finally, the correlation between chemical composition of an epitope, the resultant affinity of the early primary humoral response, and its eventual influence on relative immunogenicity could be experimentally verified. This was achieved by examining the effect of various amino-terminal substitutions on immunogenicity of a, hitherto cryptic, amino-terminal determinant. Such experiments permitted delineation of a hierarchy of individual amino acid residues based on their influence; which correlated well with calculated Gibbs-free energy changes that individual residue side chains were expected to contribute in a binding interaction. Thus, maturation of a T-dependent humoral response is initiated by a step that is under thermodynamic control.  相似文献   

20.
We present the mapping of two anti‐human interleukin‐10 (hIL‐10) antibodies (CB/RS/2 and CB/RS/11) which have been described as binding their antigen cooperatively. The epitopes were identified using hIL‐10‐derived overlapping peptide scans prepared by spot synthesis. To identify residues essential for binding within the two epitopes, each position was replaced by all other L ‐amino acids. The epitope‐derived peptides were further characterized with respect to antibody affinity and their inhibition of the antibody–hIL‐10 interaction. One antibody (CB/RS/11) binds to residues which are completely buried in the X‐ray structure of IL‐10. Accessibility of this hidden epitope is enhanced upon binding of the antibody CB/RS/2, which recognizes a discontinuous epitope located nearby. The recognition of the hidden CB/RS/11 epitope, as well as the cooperative binding behaviour of the two antibodies, provides evidence that IL‐10 can adopt a conformational state other than that observed in the crystal structure. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号