首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shyu KG  Chang H  Isner JM 《Life sciences》2003,73(5):563-579
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) are essential for vascular integrity and development. The purpose of the study was to test the hypothesis that Ang1 will promote angiogenic response to VEGF in the spontaneous Watanabe heritable hypercholesterolemic (WHHL) rabbit model of acute hindlimb ischemia. Immediately after the ligation of the external iliac artery and the excision of the common and superficial femoral artery in one female WHHL rabbit, 250 microg of phVEGF(165) (n = 8), 500 microg of pAng1* (n = 8), or 250 microg of phVEGF(165) plus 500 microg of pAng1* (n = 8) was injected intramuscularly into the ischemic hindlimb muscles. Gross appearance of ischemic limb, collateral vessel formation and limb perfusion were assessed 30 days after treatment. The incidence of ischemic limb necrosis was higher in the animals treated by phVEGF(165) or by pAng1* than in those treated by phVEGF(165) plus pAng1* (100%, 75% and 14.3%, respectively; P = 0.002). Animals in the combination therapy group had a significantly higher calf blood pressure ratio at day 30 (VEGF plus Ang1* = 0.84 +/- 0.06; VEGF = 0.54 +/- 0.01; Ang1* = 0.59 +/- 0.05; P < 0.01). A combination therapy of VEGF plus Ang*1 had a significantly higher (P < 0.01) angiographic score than either therapy alone. Capillary density (P < 0.05) and capillary/muscle fiber ratio (P < 0.01) of the combination therapy group were also significantly higher than that of either therapy alone. In conclusion, Ang1 can potentiate the angiogenic response to VEGF in the hyperlipidemic rabbit model of acute hindlimb ischemia. Intramuscular administration of cytokines on revascularization of the ischemic hindlimb model of hyperlipidemic rabbit is feasible.  相似文献   

2.
Few studies have examined in detail the combined effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) gene delivery on collateral development. Here, we evaluated the potential synergism of naked DNA vectors encoding VEGF and bFGF using a skeletal-muscle based ex vivo angiogenesis assay and compared tissue perfusion and limb loss in a murine model of hindlimb ischemia. In the ex vivo angiogenesis assay, the VEGF+bFGF combination group had a larger capillary sprouting area than those of the LacZ, VEGF, and bFGF groups. Consistent with these results, regional blood flow recovery on day 14 was also highest in the VEGF+bFGF combination group, followed by the bFGF, VEGF, and LacZ groups. The limb loss frequency was 0% in the combination group, whereas the limb loss frequencies of the other groups were 7-29%. The ischemic muscles of the combination group revealed evidence of increased angiogenesis and arteriogenesis and the upregulated expression of genes that may be associated with arteriogenesis, such as those for cardiac ankyrin repeat protein, early growth response factor-1, and transforming growth factor-beta1. Our study has implications for the development of a combined gene therapy for the vascular occlusive diseases.  相似文献   

3.
Hindlimb ischemia is a major complication of diabetic patients due to poor neovascularization. Therapy with pulsed electromagnetic fields (PEMF) can promote angiogenesis in ischemic lesions. However, the efficacy and therapeutic mechanisms of PEMF in diabetes‐related hindlimb ischemia are unclear. Sprague–Dawley rats were injected with streptozocin to induce diabetes, and 10 weeks later diabetic rats were subjected to surgical induction of acute hindlimb ischemia. The rats were randomized and treated with PEMF, and the blood perfusion of individual rats was determined longitudinally by laser Doppler perfusion imaging (LDPI). The neovascular density was examined using immunofluorescent analysis of CD31 expression and alkaline phosphatase (AP) staining. The levels of VEGF, VEGFR, FGF‐2, and FGFR1 expression, and ERK 1/2 and P38 phosphorylation in the muscles were characterized using enzyme‐linked immunosorbent assay (ELISA) and Western blot assays. The values of LDPI in the PEMF‐treated rats at 14 and 28 days post surgery were significantly greater than those in the controls, accompanied by significantly elevated levels of anti‐CD31 and AP staining. The relative levels of FGF‐2 and FGFR1, but not VEGF and VEGFR expression, and ERK1/2, but not P38 phosphorylation, in the muscles of the PEMF‐treated rats were significantly higher than those in the controls. Our data indicated that PEMF enhanced acute hindlimb ischemia‐related perfusion and angiogenesis, associated with up‐regulating FGF‐2 expression and activating the ERK1/2 pathway in diabetic rats. Therefore, PEMF may be valuable for the treatment of diabetic patients with ischemic injury. Bioelectromagnetics 34:180–188, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus (EDL), and fast-twitch superficial region of the vastus lateralis were determined in vitro (22 degrees C) in rats remobilized after prolonged (3 mo) hindlimb immobilization (IM). For all muscles the muscle-to-body weight ratio was significantly depressed by IM, and the ratios failed to completely recover even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than the slow-twitch SOL. The IM shortened the SOL isometric twitch duration due to a reduced contraction and half-relaxation time. These parameters returned to control levels by the 14th day of recovery. Peak tetanic tension (Po, g/cm2) declined with IM by 46% in the SOL but showed no significant change in the fast-twitch muscles. After IM the SOL Po (g/cm2) recovered to control values by 28 days. The recovery of Po in absolute units (g) was considerably slower and did not return to control levels until 60 (SOL) to 90 (EDL) days. The maximum shortening velocity was not altered by IM in any of the muscles studied. These results demonstrate that both fast- and slow-twitch skeletal muscles possess the ability to completely recover normal contractile function following prolonged periods of hindlimb IM.  相似文献   

5.
Nitric oxide synthase II in rat skeletal muscles   总被引:2,自引:2,他引:0  
Constitutive expression of nitric oxide synthase (NOS) II was found in rat hindlimb muscles by immunohistochemistry and western blotting during development from embryonic day 21 to the adult stage of 75 days. The immunohistochemical NOS II expression pattern was related to the physiological metabolic fibre types SO (slow-oxidative), FOG I, II (fast-oxidative glycolytic; I more glycolytic, II more oxidative) and FG (fast-glycolytic) and to the myosin-based fibre types I and IIA, IIB (IIX not separated) identified in serial sections by enzyme histochemistry and immunohistochemistry. In adult muscles only the small population of FOG II fibres, which is a part of both IIA and IIB fibre population, showed NOS II immunoreactivity. This is the reason that only weak NOS II expression in adult hindlimb muscles has been detected by western blotting. Hindlimb muscles of embryonic, neonatal and young rats of 8 days expressed more NOS II as compared with adult rat hindlimb muscles. This can be explained by the findings that before the age of 21 days fast fibres were metabolically undifferentiated, all of them were NOS II positive and contribute to the NOS II expression of the muscle. In muscles of diabetic rats the NOS II expression was elevated indicating an inhibition of glucose uptake into the muscle fibres of diabetic muscles. Our findings suggest that the NOS II may be designated both as constitutive and inducible.  相似文献   

6.
G Fumagalli  S Balbi  A Cangiano  T L?mo 《Neuron》1990,4(4):563-569
The number and metabolic stability of acetylcholine receptors (AChRs) at neuromuscular junctions of rat tibialis anterior (TA) and soleus (SOL) muscles were examined after denervation, paralysis by continuous application of tetrodotoxin to the nerve, or denervation and direct stimulation of the muscle through implanted electrodes. After 18 days of denervation AChR half-life declined from about 10 days to 2.3 days (TA) or 3.6 days (SOL) and after 18 days of nerve conduction block to 3.1 days (TA). In contrast, the total number of AChRs per endplate was unaffected by these treatments. Denervation for 33 days had no further effect on AChR half-life but reduced the total number of AChRs to about 54% (SOL) or 38% (TA) of normal. Direct stimulation of the 33-day denervated SOL from day 18 restored normal AChR stability and counteracted muscle atrophy but had no effect on the decline in AChR number. The results indicate that motoneurons control the stability of junctional AChRs through evoked muscle activity and the number of junctional AChRs through trophic factors.  相似文献   

7.
Recent reports have demonstrated that erythroid progenitor cells contain and secrete various angiogenic cytokines. Here, the impact of erythroid colony-forming cell (ECFC) implantation on therapeutic angiogenesis was investigated in murine models of hindlimb ischemia. During the in vitro differentiation, vascular endothelial growth factor (VEGF) secretion by ECFCs was observed from day 3 (burst-forming unit erythroid cells) to day 10 (erythroblasts). ECFCs from day 5 to day 7 (colony-forming unit erythroid cells) showed the highest VEGF productivity, and day 6 ECFCs were used for the experiments. ECFCs contained larger amounts of VEGF and fibroblast growth factor-2 (FGF-2) than peripheral blood mononuclear cells (PBMNCs). In tubule formation assays with human umbilical vein endothelial cells, ECFCs stimulated 1.5-fold more capillary growth than PBMNCs, and this effect was suppressed by antibodies against VEGF and FGF-2. Using an immunodeficient hindlimb ischemia model and laser-Doppler imaging, we evaluated the limb salvage rate and blood perfusion after intramuscular implantation of ECFCs. ECFC implantation increased both the salvage rate (38% vs. 0%, P < 0.05) and the blood perfusion (82.8% vs. 65.6%, P < 0.01). In addition, ECFCs implantation also significantly increased capillaries with recruitment of vascular smooth muscle cells and the capillary density was 1.6-fold higher than in the control group. Continuous production of human VEGF from ECFCs in the skeletal muscle was confirmed at least 7 days after the implantation. Implantation of ECFCs promoted angiogenesis in ischemic limbs by supplying angiogenic cytokines (VEGF and FGF-2), suggesting a possible novel strategy for therapeutic angiogenesis.  相似文献   

8.
Prolonged ischemia–reperfusion results in various damages in skeletal muscle. Following reperfusion, although the damaged muscles undergo regeneration, the precise process and mechanism of regeneration have not yet been fully understood. Here, we show the altered levels of plasma biochemical markers of muscle damage, and the change in myonuclear numbers in adult rat skeletal muscle by ischemia–reperfusion. Male Wistar rats were subjected to unilateral hindlimb ischemia by clamping the anterior tibial artery for 2 h before reperfusion. Both plasma creatine kinase activity and C-reactive protein levels in plasma were increased significantly at 0.5 h of reperfusion and returned to the control level at 24 h. The transverse sectional area of muscle belly of the anterior tibial muscles in ischemic side was significantly decreased by 20 % compared with those in sham-ischemic (control) side at 2 days, and returned to the control level at 5 days of reperfusion. Moreover, the number of interstitial nuclei in the ischemic side were significantly increased at 5–14 days and returned to the control level at 21 days of reperfusion. Central nuclei that are specifically observed in regenerating muscle, appeared at 5 days, reached a peak at 14 days, and disappeared at 28 days of reperfusion. Furthermore, MyoD, a regulatory factor for myogenesis, showed a transient expression at 5 days of reperfusion. These results indicate that, although the size of muscle seems to be recovered by 5 days of reperfusion, the most active muscle regeneration occurs much later, as shown by the increase in central nuclei.  相似文献   

9.
Recombinant adeno-associated virus serotype 2 (rAAV2) vector has been widely employed for gene therapy. Recent progress suggests that the new serotypes of AAV showed a better performance than did AAV2 in normal tissues. Here, we evaluate the potential role of human vascular endothelial growth factor (VEGF) gene transfer using rAAV vector pseudotyped with serotype 1 capsid proteins (rAAV1) in the treatment of muscle ischemia. In ischemic skeletal muscles, the rAAV1-LacZ vector allowed higher level, broader distribution, and long-lasting gene expression compared with the rAAV2-LacZ vector. Muscle VEGF165 production following the rAAV1-VEGF165 vector injection was 5-10 times higher than that following the rAAV2-VEGF165 vector injection. VEGF165 production mediated by the rAAV1-VEGF165 vector stimulated a large set of neovascularization with relatively mature vascular structures and enhanced muscle regeneration in the ischemic skeletal muscles. Thus, the rAAV1-VEGF165 vector mediated gene transfer may be a therapeutic approach to peripheral vascular diseases.  相似文献   

10.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

11.
The objective of this study was to investigate the efficacy of combination gene therapy with multiple angiogenic growth factor cDNAs to enhance survival of ischemic skin flaps in a rat model. Sixty Sprague-Dawley rats were divided into six groups. Varying combinations of VEGF165, PDGF-B, and bFGF-plasmids were injected to prefabricate the flaps. Random skin flaps were raised on the dorsal aspect of rats following prefabrication with growth factor cDNAs. Flap viability was determined by measurement of percentage area of survival. The efficacy of gene therapy was evaluated by flap survival and neovascularization of representative histologic sections stained immunohistologically. The VEGF165 plus bFGF cDNAs enhanced the viability of the flap and neovascularization most effectively; the flap survival area was 64.3 +/- 8.7% after transfer of these two growth factor genes. Addition of PDGF-B cDNA is deleterious to the effects of combined VEGF165 and bFGF, leading to a significant decrease in flap viability (44.9 +/- 2.7%). Viability of the flaps with combined VEGF165 and bFGF cDNA transfer was significantly greater than that of the flaps with VEGF165 transfer alone (57.6 +/- 5.2%) or sham plasmid control (52.3 +/- 5.0%). Combined transfer of VEGF165 and bFGF cDNA is the most effective combination of multiple growth factor genes to improve flap viability in this model. Simultaneous transfer of three growth factor genes (VEGF165, PDGF-B, and bFGF) is deleterious to flap survival, at least for the ratio of lipofectin:transgene employed.  相似文献   

12.
BACKGROUND: Vascular endothelial growth factor (VEGF) gene transfer with recombinant adeno-associated viral (rAAV) vector for ischemia heart disease therapy is being increasingly studied. However, uncontrolled long-term expression of VEGF may cause some side effects. Therefore, an attempt to develop an effective gene control system for safeguarding against such side effects should be made. Pathphysiologically, an ideal control system for VEGF gene expression is letting it respond to hypoxia. We used nine copies of hypoxic response element (HRE) to regulate expression of hVEGF(165) in the myocardium, and tried to elucidate the feasibility and safety of the application of the HIF-1-HRE system. METHODS: Cardiomyocytes of neonatal Sprague Dawley rats were cultured and incubated with rAAV-9HRE-hVEGF(165), and pig ischemic heart models were established and rAAV-9HRE-hVEGF(165) was injected into ischemia myocardium. RT-PCR, Western blot, ELISA, and immunohistochemistry were used to determine hVEGF(165) expressions of cultured cardiomyocytes and myocardium under hypoxic and reoxygenation conditions. RESULTS: The results of RT-PCR and ELISA determinations revealed that, in cultured cardiomyocytes, expressions of hVEGF(165)mRNA and protein were up-regulated under hypoxic conditions. After 4 h of reoxygenation, hVEGF(165)mNRA expression was decreased, and disappeared following 8 to 12 h of reoxygenation (P < 0.01). RT-PCR and Western blot also showed that, under myocardial ischemia, hVEGF(165) expression was increased significantly (P < 0.01). Following myocardial reperfusion, both hVEGF(165)mRNA and protein expressions were inhibited (P < 0.01). The new vessels in the reperfusion condition were decreased. CONCLUSIONS: This study suggested that 9HRE can effectively control hVEGF(165) gene expression in vivo and in vitro. It has feasibility for using the HIF-1-HRE system for regulation of angiogenic factor expression in ischemia heart.  相似文献   

13.
The mechanisms underlying coronary capillary growth in response to ischemia are undefined. We hypothesized that the expression of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)/Tie-2 were involved in capillary growth as an adaptation to ischemia. To test this hypothesis we measured capillary density, and the expressions of VEGF, Ang-1, Ang-2, and the Tie-2 receptor and its phosphorylation state during repetitive episodes of myocardial ischemia in chronically instrumented canines. Repetitive episodes of ischemia were induced by multiple (once/hour; 8/day), brief (2 min) occlusions of the left anterior descending coronary artery for 1, 7, 14, or 21 days. A sham group received the same instrumentation as the experimental groups but not the occlusion protocol. Collateral blood flow (microspheres) progressively increased from 9 +/- 3 to 83 +/- 10 ml. min-1. 100 g-1 on day 21. Capillary density increased at day 7 from 2378 +/- 53 (sham) to 2962 +/- 60/mm2, but it decreased to 2594 +/- 39/mm2 at day 21. Both VEGF and Ang-2 expression in myocardial interstitial fluid (Western analyses) peaked at day 3 of the repetitive occlusions but waned thereafter. In contrast the expression of Ang-1 remained relatively constant at all times in the occlusion groups. In shams, the expression of VEGF and Ang-2 was low and constant at all times. Tie-2 phosphorylation myocardial decreased decreased at day 7 but increased at 21 days of occlusions (P < 0.05). Our results indicate that capillary density was augmented by myocardial ischemia, but after development of collaterals and restoration of flow to the ischemic zone, capillary density returned to control levels. The change in capillary density paralleled with VEGF and Ang-2 expression but was inversely related to Tie-2 phosphorylation. We speculate the coronary angiogenesis is a coordinated event involving the expression of both VEGF and Ang-2 and that therapeutic angiogenic strategies may ultimately require treatment with more than a single factor.  相似文献   

14.
BACKGROUND: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology. METHODS: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia. Hamsters fed a cholesterol-rich diet and subjected to hindlimb ischemia exhibit a sustained impaired angiogenic response, as evidenced by decreased angiographic score and histological quantification of arterioles in the ischemic muscles. RESULTS: In this model, we demonstrate that NV1FGF (a human FGF-1 expression plasmid), given intramuscularly 14 days after induction of hindlimb ischemia, promoted the formation of both collateral vessels and arterioles 14 days after treatment (i.e. 28 days post-ischemia). CONCLUSIONS: Our data provide evidence that NV1FGF can reverse the cholesterol-induced impairment of revascularization in a hamster model of hindlimb ischemia by promoting the growth of both collateral vessels and arterioles in ischemic muscles exhibiting significantly decreased levels of gene expression compared with control muscles. Therefore, this study underscores the relevance of NV1FGF gene therapy to overcome perfusion defects in patients with PAD.  相似文献   

15.
Female Sprague-Dawley rats (250 g) were hindlimb suspended for 14 days, and the effects of hindlimb unweighting (HU) on skeletal muscle anaerobic metabolism were investigated and compared with nonsuspended controls (C). Soleus (SOL), plantaris (PL), and red and white portions of the gastrocnemius (RG, WG) were sampled from resting and stimulated limbs. Muscle atrophy after HU was 46% in SOL, 22% in PL, and 24% in the gastrocnemius compared with nonsuspended C animals. The muscles innervated by the sciatic nerve were stimulated to contract with an occluded circulation for 60 s with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1.0 Hz. Peak tension development by the gastrocnemius-PL-SOL muscle group was similar in HU and C animals (13.0 +/- 1.2, 12.2 +/- 0.8 N/g wet muscle). Occlusion of the circulation before stimulation created a predominantly anaerobic environment, and in situ glycogenolysis and glycolysis were estimated from accumulations of glycolytic intermediates. Total glycogenolysis and glycolysis were higher in the RG muscle of HU animals (74.6 +/- 3.3, 58.1 +/- 1.1) relative to C (57.1 +/- 4.6, 46.1 +/- 2.9 mumol glucosyl units/g dry muscle). Consequently, total anaerobic ATP production was also increased (HU, 251.3 +/- 1.1; C, 204.6 +/- 8.9 mumol ATP/g dry muscle). Total ATP production, glycogenolysis, and glycolysis were unaffected by HU in SOL, PL, and WG muscles. The enhanced glycolytic activity in RG after HU may be attributed to a shift in the metabolic profile from oxidative to glycolytic in the fast oxidative-glycolytic fiber population.  相似文献   

16.
The effect of long-term hindlimb unloading (2 or 5 week) on the expression of uncoupling protein-3 (UCP3) gene was investigated in rat skeletal muscles. The interaction of hindlimb unloading and thyroid status was also investigated at 2 weeks. Whatever the duration, mechanical unloading induced a similar increase in UCP3 mRNA relative abundance in the slow-twitch soleus (SOL) muscle (+80%, P < 0.05), whereas no effect was observed in the fast-twitch extensor digitorum longus (EDL) muscle. Hypothyroidism down-regulated while hyperthyroidism up-regulated UCP3 mRNA relative abundance in both SOL and EDL muscles, but thyroid status did not prevent the up-regulation of UCP3 induced by 2 weeks of suspension. These data therefore indicate for the first time that long-term hindlimb unloading up-regulates muscle UCP3 gene expression in a muscle-specific manner which is independent of thyroid status.  相似文献   

17.
Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy   总被引:32,自引:0,他引:32  
Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.  相似文献   

18.
Although insulin-like growth factor 1 (IGF 1) has been used in immobilizated muscles to prevent muscle atrophy, its effects on muscle atrophy after brain ischemia are not known. This study aimed to determine the effects of IGF 1 on preventing muscle atrophy in rats with brain ischemia. Middle cerebral artery occlusion (MCAO) was used to induce the brain ischemia. In the first part of the study, rats were assigned to sham control, ischemic control, and ischemia with different dosages of IGF 1 injection groups to determine the optimal dosage of IGF 1 on preventing muscle atrophy after brain ischemia. In the second part of the study, rats were assigned to sham control, ischemic control, ischemia with IGF 1, or with IGF 1 receptor inhibitor (AG1024) injection groups to determine the specificity of IGF 1 on preventing muscle atrophy after brain ischemia. IGF 1 or AG1024 was injected locally to calf muscles and anterior tibialis (TA) starting from one day after brain ischemia and injections were carried out every other day for 4 times. Muscle weight and myosin heavy chain (MHC) expression in both red (red gastrocnemius and soleus) and white (white gastrocnemius and TA) muscles were significantly decreased after brain ischemia. With at least moderate-dosage (200 ng/100 microl PBS) IGF 1 injection, the muscle weight and MHC protein could be restored in both red and white muscles resulting in better motor performance. However, the high-dose injection of IGF 1 (400 ng/100 microl PBS) did not result in further effects. IGF 1 increased the expression of p-Akt, but such effects were prevented by AG1024 resulting in muscle atrophy and poor motor function. In conclusion, peripheral application of IGF 1 not only prevented muscle atrophy but also enhanced motor function in rats with brain ischemia. The IGF 1-induced PI3K/Akt pathways are important for preventing muscle atrophy induced by brain ischemia.  相似文献   

19.
20.
In this study, conducted on mice of the C57BL/6J+/+ strain, we investigated the differential effects of denervation on the isometric contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles. The contractile properties were studied at 1, 28, 84, and 210 days following unilateral section of the sciatic nerve at 12 weeks of age. When isometric tetanus tension was expressed relative to wet weight, the denervated SOL showed an earlier and more pronounced loss in tension generating capacity than the EDL. Both the denervated SOL and EDL showed potentiation of the twitch tension at 28 days postdenervation. The time to peak twitch tension (TTP) and the time to half-relaxation (1/2RT) were prolonged by 28 days postdenervation in both muscles. This trend continued to the oldest age-groups studied in the EDL, but reached an apparent plateau in the SOL at 84 days postdenervation. In response to fatigue, the denervated SOL showed a marked decrease in resistance to fatigue at 1 day but a relatively normal response thereafter, whereas the denervated EDL showed an increase in resistance to fatigue at and beyond the 28-day period. In spite of the fact that the total contraction time of both muscles increased following denervation, the predominantly oxidative SOL remained a slower contracting muscle than the more glycolytic EDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号