首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Lipoxygenase is suggested to be involved in the early event of atherosclerosis by inducing plasma low-density lipoprotein (LDL) oxidation in the subendothelial space of the arterial wall. Since flavonoids such as quercetin are recognized as lipoxygenase inhibitors and they occur mainly in the glycoside form, we assessed the effect of quercetin and its glycosides (quercetin 3-O-β-glucopyranoside, Q3G; quercetin 4′-O-β-glucopyranoside, Q4′G; quercetin 7-O-β-glucopyranoside, Q7G) on rabbit reticulocyte 15-lipoxygenase (15-Lox)-induced human LDL lipid peroxidation and compared it with the inhibition obtained by ascorbic acid and α-tocopherol, the main water-soluble and lipid-soluble antioxidants in blood plasma, respectively. Quercetin inhibited the formation of cholesteryl ester hydroperoxides (CE-OOH) and endogenous α-tocopherol consumption effectively throughout the incubation period of 6 h. Ascorbic acid exhibited an effective inhibition only in the initial stage and LDL preloaded with fivefold α-tocopherol did not affect the formation of CE-OOH compared with the native LDL. CE-OOH formation was inhibited by both quercetin and quercetin monoglucosides in a concentration-dependent manner. Quercetin, Q3G, and Q7G exhibited a higher inhibitory effect than Q4′G (IC50: 0.3–0.5 μM for quercetin, Q3G, and Q7G and 1.2 μM for Q4′G). While endogenous α-tocopherol was completely depleted after 2 h of LDL oxidation, quercetin, Q7G, and Q3G prevented the consumption of α-tocopherol. Quercetin and its monoglucosides were also exhausted during the LDL oxidation. These results indicate that quercetin glycosides as well as its aglycone are capable of inhibiting lipoxygenase-induced LDL oxidation more efficiently than ascorbic acid and α-tocopherol.  相似文献   

2.
To determine the antioxidant activity of dietary quercetin (3,3',4', 5,7-pentahydroxyflavone) in the blood circulation, we measured the inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation of human low-density lipoprotein (LDL). Conjugated quercetin metabolites were prepared from the plasma of rat 1 h after oral administration of quercetin aglycone (40 micromol/rat). The rate of cholesteryl ester hydroperoxide (CE-OOH) accumulation and the rate of alpha-tocopherol consumption in mixtures of LDL solution (0.4 mg/ml) with equal volumes of this preparation were slower than the rates in mixtures of LDL with preparations from control rats. The concentrations of CE-OOH after 2 h oxidation in the mixtures of LDL with preparations of conjugated quercetin metabolites were significantly lower than those in the control preparation. It is therefore confirmed that conjugated quercetin metabolites have an inhibitory effect on copper ion-induced lipid peroxidation in human LDL. Quercetin 7-O-beta-glucopyranoside (Q7G) and rhamnetin (3,3',4', 5-tetrahydroxy-7-methoxyflavone) exerted strong inhibition and their effect continued even after complete consumption, similarly to quercetin aglycone. The effect of quercetin 3-O-beta-glucopyranoside (Q3G) did not continue after its complete consumption, indicating that the antioxidant mechanism of quercetin conjugates lacking a free hydroxyl group at the 3-position is different from that of the other quercetin conjugates. The result that 4'-O-beta-glucopyranoside (Q4'G) and isorhamnetin (3,4',5, 7-tetrahydroxy-3'-methoxyflavone) showed little inhibition implies that introduction of a conjugate group to the position of the dihydroxyl group in the B ring markedly decreases the inhibitory effect. The results of azo radical-induced lipid peroxidation of LDL and the measurement of free radical scavenging capacity using stable free radical, 1,1,-diphenyl-2-picrylhydrazyl, demonstrated that the o-dihydroxyl structure in the B ring is required to exert maximum free radical scavenging activity. It is therefore likely that conjugation occurs at least partly in positions other than the B ring during the process of metabolic conversion so that the inhibitory effect of dietary quercetin is retained in blood plasma after absorption.  相似文献   

3.
Spice components and their active principles are potential antioxidants. In this study we examined the effect of phenolic and non-phenolic active principles of common spices on copper ion-induced lipid peroxidation of human low density lipoprotein (LDL) by measuring the formation of thiobarbituric acid reactive substance (TBARS) and relative electrophoretic mobility (REM) of LDL on agarose gel. Curcurriin, capsaicin, quercetin, piperine, eugenol and allyl sulfide inhibited the formation of TBARS effectively through out the incubation period of 12 h and decreased the REM of LDL. Spice phenolic active principles viz. curcumin, quercetin and capsaicin at 10 M produced 40–85% inhibition of LDL oxidation at different time intervals while non-phenolic antioxidant allyl sulfide was less potent in inhibiting oxidation of LDL. However, allyl sulfide, eugenol and ascorbic acid showed pro-oxidant activity at lower concentrations (10 M) and antioxidant activity at higher concentrations (50 M) only. Among the spice principles tested quercetin and curcumin showed the highest inhibitory activity while piperine showed least antioxidant activity at equimolar concentration during initiation phase of oxidation of LDL. The inhibitory effect of curcumin, quercetin and capsaicin was comparable to that of BHA, but relatively more potent than ascorbic acid. Further, the effect of curcurnin, quercetin, capsaicin and BHA on initiation and propagation phases of LDL oxidation showed that curcurnin significantly inhibited both initiation and propagation phases of LDL oxidation, while quercetin was found to be ineffective at propagation phase. These data suggest that the above spice active principles, which constitute about 1–4% of above spices, are effective antioxidants and offer protection against oxidation of human LDL.  相似文献   

4.
The oxidation of low density lipoprotein (LDL) by lipoxygenase has been implicated in the pathogenesis of atherosclerosis. It has been known that lipoxygenase-mediated lipid peroxidation proceeds in general via regio-, stereo- and enantio-specific mechanisms, but that it is sometimes accompanied by a share of random hydroperoxides as side reaction products. In this study we investigated the oxidation of various substrates (linoleic acid, methyl linoleate, phosphatidylcholine, isolated LDL, and human plasma) by the arachidonate 15-lipoxygenases from rabbit reticulocytes and soybeans aiming at elucidating the effects of substrate, lipoxygenase and reaction milieu on the contribution and mechanism of random oxidation and also the effect of antioxidant. The specific character of the rabbit 15-lipoxygenase reaction was confirmed under all conditions employed here. However, the specificity by soybean lipoxygenase was markedly dependent on the conditions. When phosphatidylcholine liposomes and LDL were oxygenated by soybean lipoxygenase, the product pattern was found to be exclusively regio-, stereo-, and enantio-random. When free linoleic acid was incorporated into PC liposomes and oxidized by soybean lipoxygenase, the free acid was specifically oxygenated, whereas esterified linoleate gave random oxidation products exclusively. Radical-scavenging antioxidants such as alpha-tocopherol, ascorbic acid and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol selectively inhibited the random oxidation but did not influence specific product formation. It is assumed that the random reaction products originate from free radical intermediates, which have escaped the active site of the enzyme and thus may be accessible to radical scavengers. These data indicate that the specificity of lipoxygenase-catalyzed lipid oxidation and the inhibitory effects of antioxidants depend on the physico-chemical state of the substrate and type of lipoxygenase and that they may change completely depending on the conditions.  相似文献   

5.
Although a high intake of antioxidants may decrease the risk of developing cardiovascular diseases, under certain circunstances they may promote free radical generation and lipid peroxidation. The objectives of the present study were to determine the antioxidant effects of ascorbic acid (AA), dehydroascorbic acid (DHA) and flavonoids on LDL submitted to different degrees of oxidation. LDL was submitted to oxidation with CuCl2 (2.4 μM). Before or at different times after the propagation of the oxidation process, 28 μM (5 μg/ml) of either AA or DHA or 5 μg/mL flavonoids extract were added. Alpha-tocopherol, conjugated dienes, thiobarbituric acid reacting substances (TBARS) and LDL electrophoretic mobility were determined as indices of LDL oxidation. The presence of any of the three antioxidants from the onset of the incubation delayed the oxidation process. However, the addition of both DHA and flavonoids to the oxidation process when it was already initiated and alpha-tocopherol consumed, accelerated the oxidation. In contrast, AA delayed the oxidation process even when added after alpha-tocopherol was consumed. Nevertheless, it also accelerated LDL oxidation when added during the propagation phase of the oxidation process. In conclusion: although AA, DHA and flavonoids delay LDL oxidation when added before the initiation of the process, they accelerate the process if added to minimally oxidized LDL.  相似文献   

6.
Characterization of antioxidants present in hawthorn fruits   总被引:2,自引:0,他引:2  
Hawthorn fruit extract has been shown to have many health benefits including being cardiovascular protective, hypotensive and hypocholesterolemic. The present study was carried out to characterize further the antioxidants of hawthorn fruit and their effect on the oxidation of human low density lipoprotein (LDL) and alpha-tocopherol. The dry hawthorn fruit was extracted successively with ether, ethyl acetate, butanol and water. The ethyl acetate fraction was only effective in inhibition of Cu(+2)-mediated LDL oxidation. The column chromatographic separation led to isolation of eight pure compounds; namely, ursolic acid, hyperoside, isoquercitrin, epicatechin, chlorogenic acid, quercetin, rutin and protocatechuic acid. All of these phenolic compounds, except ursolic acid, were protective to human LDL from Cu(+2)-mediated LDL oxidation. They were also effective in preventing the peroxy free radical-induced oxidation of alpha-tocopherol in human LDL. The inhibitory effect of these compounds on oxidation of LDL and alpha-tocopherol was dose-dependent at concentrations ranging from 5 to 40 μM. In addition, supplementation of 2% hawthorn fruit powder significantly elevated serum alpha-tocopherol by 18-20% in rats fed a 30% polyunsaturated canola oil diet, as compared with the control. The present results suggest that part of the mechanism for cardiovascular protective effects of hawthorn fruit might also involve the direct protection to human LDL from oxidation or indirect protection via maintaining the concentration of alpha-tocopherol in human LDL.  相似文献   

7.
Effects of dietary antioxidants on human DNA ex vivo   总被引:4,自引:0,他引:4  
The protective effect of fruits and vegetables against cancer is well established. It is believed that this effect is mediated by antioxidants and decreased oxidative damage to DNA. However, the identity of the antioxidant(s) responsible is not clear. Moreover, a potentially damaging pro-oxidant effect of some antioxidants has been reported. In this study the ex vivo effects of several dietary antioxidants, including quercetin, various catechins, ascorbic acid and alpha-tocopherol, were investigated, at concentrations up to 200 microM, using the single cell gel electrophoresis (comet) assay for DNA damage. Lymphocytes from three healthy subjects were pre-incubated with these antioxidants, and the comet assay was performed on treated, untreated, challenged and unchallenged cells in parallel, oxidant challenge being induced by 5 min exposure to hydrogen peroxide (final concentrations H2O2: 30, 45, or 60 microM). Results using this ex vivo cellular assay showed protection by some antioxidants (quercetin, caffeic acid), no effect by some (catechin, epicatechin, catechin gallate, epicatechin gallate) and an apparently damaging effect by others (epigallocatechin, epigallocatechin gallate). Damage may have been caused by production of H2O2 from these polyphenolics. Neither ascorbic acid nor alpha-tocopherol protected or damaged DNA. Further study of the role of quercetin and caffeic acid in DNA protection is needed.  相似文献   

8.
Lipid peroxidation and lipid-derived oxidized products have been implicated in the pathogenesis of a variety of human diseases. To clarify the role of oxidative stress in essential hypertension and hypercholesterolemia the in vitro oxidative susceptibility of LDL, the antioxidant status and the lipid peroxide content of blood plasma were examined in hypercholesterolemic (HC), hypertensive (H), hypercholesterolemic/hypertensive (HH) and normolipidemic/normotensive subjects (N). Plasma ascorbate and lipid-soluble antioxidants were lower, while LDL oxidizability, CE-OOH and TL-OOH were higher in H, HC, and HH groups than in the N group. No difference was observed among groups for PL-OOH and isoprostanes. In summary, the results show that: 1) lipid- and water-soluble antioxidants are lower in hypercholesterolemic and hypertensive patients as compared to normal subjects, whereas the lipid peroxide content and the LDL susceptibility to oxidation were higher; 2) total cholesterol, LDL-cholesterol, apoB and CE-OOH were negatively correlated with the content of a-tocopherol; 3) there was a positive correlation between the content of lipid-soluble antioxidants and the resistance of LDL to oxidation; and 4) CE-OOH and TL-OOH were positively correlated with total cholesterol and LDL-cholesterol.  相似文献   

9.
Arsenic exists ubiquitously in our environment and various forms of arsenic circulate in air, water, soil and living organisms. Since arsenic compounds have shown to exert their toxicity chiefly by generating reactive oxygen species, we have evaluated the effect of antioxidants ascorbic acid and alpha-tocopherol on lipid peroxidation, antioxidants and mitochondrial enzymes in liver and kidney of arsenic exposed rats. A significant increase in the level of lipid peroxidation and decrease in the levels of antioxidants and in the activities of mitochondrial enzymes were observed in arsenic intoxicated rats. Co-administration of arsenic treated rats with ascorbic acid and alpha-tocopherol showed significant reduction in the level of lipid peroxidation and elevation in the levels of ascorbic acid, alpha-tocopherol, glutathione and total sulfhydryls and in the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome c oxidase. From our results, we conclude that ascorbic acid and alpha-tocopherol alleviate arsenic- induced alterations in mitochondria.  相似文献   

10.
Dietary antioxidants, including alpha-tocopherol (alpha-TOH) and polyphenolic flavonoid compounds, have been the subject of much research interest, but few studies have investigated interactions between these two antioxidants in vivo. We have conducted a feeding study to determine if supplementation with dietary flavonoids or polyphenol-containing compounds will provide antioxidant protection in tocopherol-deficient animals or exceed the antioxidant protection provided by alpha-TOH alone, using the sensitive and specific measure of lipid peroxidation, F2-isoprostanes. Seventy-two male Sprague Dawley rats were divided into 12 treatment groups to receive either alpha-TOH-sufficient or -deficient AIN93-G diet supplemented with one of five compounds: 0.5% quercetin, catechin, or epicatechin; or 1% cocoa powder or lignin. The fat source was polyunsaturated oil, increased from 7 to 11.05% (w/w with diet) to maximize lipid peroxidation while staying within a physiological range. After 7 weeks of treatment, animals were sacrificed with plasma and hearts analyzed to determine differences in F2-isoprostane levels. None of the treatment compounds significantly decreased plasma or heart F2-isoprostanes compared to the control beyond the significant protection displayed by alpha-tocopherol. We conclude that under these experimental conditions, quercetin, catechin, and epicatechin do not suppress lipid peroxidation in vivo.  相似文献   

11.
In this work, a quantitative kinetic model for investigating the heme-induced peroxidation of linoleic acid and its inhibition by two important dietary antioxidants, quercetin and alpha-tocopherol, is developed. The main conclusions of this work are: (1) The time dependence of the lipid hydroperoxide concentration is critically dependent on the rate constant for lipid hydroperoxide cleavage, initial fraction of lipid hydroperoxides among the pool of conjugated dienes, and rate of heme degradation. (2) The lipophilic antioxidant alpha-tocopherol acts as a chain-breaking antioxidant that quickly reduces 1-2 eq of lipid peroxyl radicals (inhibition of propagation), whereas the more hydrophilic antioxidant quercetin is only marginally chain-breaking but capable of reducing 4-5 eq of iron-oxo initiator (inhibition of initiation). (3) Based on comparisons between experimental peroxidation curves and simulated curves assuming additivity, it can be concluded that combinations of alpha-tocopherol and quercetin are generally synergistic. The kinetic analysis and HPLC titrations of the antioxidants both suggest that synergism mainly arises from a capacity of alpha-tocopherol to regenerate some quercetin oxidation products still endowed with a reducing activity.  相似文献   

12.
Chain-breaking antioxidants such as butylated hydroxytoluene, alpha-tocopherol, and probucol have been shown to decrease markedly the oxidative modification of low density lipoprotein (LDL). Their mechanism of action appears to involve scavenging of LDL-lipid peroxyl radicals. The purpose of this study was to investigate the occurrence of radical reactions produced during oxidation of LDL and LDL-containing probucol initiated by lipoxygenase or copper. In addition, we have investigated the possibility of a synergistic interaction between ascorbate and probucol in inhibiting the oxidation of LDL. Incubation of LDL-containing probucol and lipoxygenase produced a composite electron spin resonance (ESR) spectrum due to the endogenous alpha-tocopheroxyl radical and probucol-derived phenoxyl radical. The spectral assignment was further verified by chemical oxidation of alpha-tocopherol and probucol. In the presence of ascorbic acid, these radicals in the LDL particle were reduced to their parent compounds with concomitant formation of the ascorbate radical. In both the peroxidation of linoleic acid and the copper-initiated peroxidation of LDL, the antioxidant activity of probucol was significantly increased by low (3-6 microM) concentrations of ascorbate. The probucol-dependent inhibition of LDL oxidation was enhanced in the presence of ascorbic acid. We conclude that the reaction between the phenoxyl radical of probucol and ascorbate results in a synergistic enhancement of the antioxidant capacity of these two compounds and speculate that such reactions could play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.  相似文献   

13.
The gastric digestion of food containing oxidizable lipids and iron catalysts for peroxide decomposition such as (met)myoglobin from muscle meat can be accompanied by an extensive formation of potentially toxic lipid hydroperoxides. An early protective action by dietary antioxidants in the gastro-intestinal tract is plausible, especially for poorly bioavailable antioxidants such as polyphenols. Hence, the ability of antioxidants to inhibit lipid peroxidation initiated by dietary iron in mildly acidic emulsions is a valuable and general model. In this work, the ability of some ubiquitous dietary antioxidants representative of the main antioxidant classes (alpha-tocopherol, the flavonol quercetin, beta-carotene) to inhibit the metmyoglobin-induced peroxidation of linoleic acid is investigated by UV-visible spectroscopy and HPLC in mildly acidic emulsions. The phenolic antioxidants quercetin and alpha-tocopherol come up as the most efficient peroxidation inhibitors. Inhibition by quercetin essentially proceeds in the aqueous phase via a fast reduction of an unidentified activated iron species (with a partially degraded heme) produced by reaction of metmyoglobin with the lipid hydroperoxides. This reaction is faster by, at least, a factor 40 than the reduction of ferrylmyoglobin (independently prepared by reacting metmyoglobin with hydrogen peroxide) by quercetin. By contrast, alpha-tocopherol mainly acts in the lipid phase by reducing the propagating lipid peroxyl radicals. The poorer inhibition afforded by beta-carotene may be related to both its slower reaction with the lipid peroxyl radicals and its competitive degradation by autoxidation and/or photo-oxidation.  相似文献   

14.
Nitrogen dioxide (NO2.) is often present in inhaled air and may be generated in vivo from nitric oxide. Exposure of human blood plasma to NO2. caused rapid losses of ascorbic acid, uric acid and protein thiol groups, as well as lipid peroxidation and depletions of alpha-tocopherol, bilirubin and ubiquinol-10. No increase in protein carbonyls was detected. Supplementation of plasma with ascorbate decreased the rates of lipid peroxidation, alpha-tocopherol depletion and loss of uric acid. Uric acid supplementation decreased rates of lipid peroxidation but not the loss of alpha-tocopherol. We conclude that ascorbic acid, protein -SH groups, uric acid and alpha-tocopherol may be important agents protecting against NO2. in vivo. If these antioxidants are depleted, peroxidation of lipids occurs and might contribute to the toxicity of NO2..  相似文献   

15.
Nonalcoholic steatohepatitis (NASH) is a common and potentially severe form of liver disease. This study aimed to determine the effect of ursodeoxycholic acid and its NO-releasing derivative NCX-1000 alone or in combination with antioxidants on cultured mouse hepatocytes treated with amiodarone to mimic certain aspects of hepatocyte injury found in NASH. Isolated mouse hepatocytes were incubated with ursodeoxycholic acid or NCX-1000 (0-100 micromol/L) combined or not combined with the hydrophilic antioxidants butylated hydroxytoluene and ascorbic acid (0-100 micromol/L) or with the lipophilic antioxidant alpha-tocopherol (0-100 micromol/L) 15 min before adding amiodarone (50 micromol/L) to the culture medium. Twenty hours later, necrosis, apoptosis, superoxide anion production, and malondialdehyde levels were assessed in cultured cells. Amiodarone led to a dose-dependent decrease in cell viability with an LD50 of 50 micromol/L and increased production of superoxide anion and lipid peroxidation. NCX-1000 showed a better protective potential than ursodeoxycholic acid against the toxic effects of amiodarone. The hydrophilic antioxidants had no effect on the toxicity of amiodarone, whereas alpha-tocopherol at a concentration >100 micromol/L almost completely suppressed it. Ursodeoxycholic acid and NCX-1000 protection was additive only when they were combined with alpha-tocopherol, not with butylated hydroxytoluene or ascorbic acid. In addition, all the antioxidants tested reduced the superoxide anion detected, but only alpha-tocopherol prevented lipid peroxidation induced by amiodarone. The combination of lipophilic antioxidants with ursodeoxycholic acid or NCX-1000 enhances their protective potential and could represent an interesting therapeutic approach to explore for the treatment of NASH.  相似文献   

16.
The effect of quercetin on iron-catalyzed hepatic microsomal lipid peroxidation was investigated. Quercetin was shown to be a potent inhibitor of iron-induced lipid peroxidation with a I50 of 0.2 mM. The inhibitory effects of quercetin were dependent on incubation time, protein concentration and iron content in the incubation mixture. Since quercetin does not interact with malonyl-aldehyde it can be concluded that the inhibition of iron induced lipid peroxidation is due to lipid antioxidant property and this may serve as a model for the study by which "free" iron may initiate peroxidation in vivo.  相似文献   

17.
The mechanisms by which low-density lipoprotein (LDL) particles undergo oxidative modification to an atherogenic form that is taken up by the macrophage scavenger-receptor pathway have been the subject of extensive research for almost two decades. The most common method for the initiation of LDL oxidation in vitro involves incubation with Cu(II) ions. Although various mechanisms have been proposed to explain the ability of Cu(II) to promote LDL modification, the precise reactions involved in initiating the process remain a matter of contention in the literature. This review provides a critical overview and evaluation of the current theories describing the interactions of copper with the LDL particle. Following discussion of the thermodynamics of reactions dependent upon the decomposition of preexisting lipid hydroperoxides, which are present in all crude LDL preparations, attention is turned to the more difficult (but perhaps more physiologically-relevant) system of the hydroperoxide-free LDL particle. In both systems, the key role of alpha-tocopherol is discussed. In addition to its protective, radical-scavenging action, alpha-tocopherol can also behave as a prooxidant via its reduction of Cu(II) to Cu(I). Generation of Cu(I) greatly facilitates the decomposition of lipid hydroperoxides to chain-carrying radicals, but the mechanisms by which the vitamin promotes LDL oxidation in the absence of preformed hydroperoxides remain more speculative. In addition to the so-called tocopherol-mediated peroxidation model, in which polyunsaturated fatty acid oxidation is initiated by the alpha-tocopheroxyl radical (generated during the reduction of Cu(II) by alpha-tocopherol), an evaluation of the role of the hydroxyl radical is provided. Important interactions between copper ions and thiols are also discussed, particularly in the context of cell-mediated LDL oxidation. Finally, the mechanisms by which ceruloplasmin, a copper-containing plasma protein, can bring about LDL modification are discussed. Improved understanding of the mechanisms of LDL oxidation by copper ions should facilitate the establishment of any physiological role of the metal in LDL modification. It will also assist in the interpretation of studies in which copper systems of LDL oxidation are used in vitro to evaluate potential antioxidants.  相似文献   

18.
The antioxidant action of flavonols in different systems of lipid peroxidation (LPO) was studied. Quercetin and rutin were found to inhibit NADPH and CCl4-dependent LPO in rat liver microsomes, however, in the case of CCl4-dependent LPO, rutin had a very poor antioxidant effect. Study of flavonols oxidation by products of the cytochrome c catalyzed destruction of linoleic acid hydroperoxide demonstrated that the differences in the antioxidant offects of quercetin and rutin can be due to their different capability to terminate free radical chain reactions. The antioxidant effect of rutin was shown to be largely due to the chelating properties of this compound.  相似文献   

19.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

20.
Nicotinamide (vitamin B3) an endogenous metabolite, showed significant inhibition of oxidative damage induced by reactive oxygen species (ROS) generated by ascorbate-Fe2+ and photosensitization systems in rat brain mitochondria. It protected against both protein oxidation and lipid peroxidation, at millimolar concentrations. Inhibition was more pronounced against oxidation of proteins than peroxidation of lipids. Chemically related endogenous compounds, tryptophan and isonicotinic acid, showed comparable inhibitory properties. The protective effect observed, at biologically relevant concentrations, with nicotinamide was more than that of the endogenous antioxidants ascorbic acid and alpha-tocopherol. Hence our studies suggest that nicotinamide (vitamin B3) can be considered as a potent antioxidant capable of protecting the cellular membranes in brain, which is highly susceptible to prooxidants, against oxidative damage induced by ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号