首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hessian fly, Mayetiola destructor (Say), is the most important insect pest of wheat in Morocco, where host plant resistance has been used successfully for control. Our objective was to determine the frequency of Hessian fly virulence on H5, H13 and H22 resistance genes. Five Hessian fly populations from the principal cereal‐growing regions in Morocco were studied. The variability in percentage of susceptible plants across Hessian fly populations was highly significant (P < 0.01), indicating differences in virulence frequencies. Plants with the H13 gene had the lowest percentage of susceptible plants, 1.77 and 1.51%, when infested with Hessian flies from Fes and Marchouch, respectively. A low level of virulence to H22 was detected in Fes, Abda and Marchouch populations, 1.87, 1.54 and 1.99% susceptible plants, respectively. The level of virulence to H5 was low in all the five populations. The Beni Mellal population gave the highest percentage of susceptible plants carrying H13 and H22 genes, 6.43 and 7.28%, respectively. The size of live larvae on susceptible plants of the three cultivars carrying H5, H13 and H22 was similar to that of the susceptible check, indicating that a true virulence (biotype) is developing in Hessian fly populations in Morocco. Thus, continuous monitoring of the development of Hessian fly biotypes is essential for optimal deployment of resistance genes.  相似文献   

2.
In Tunisia, the Hessian fly Mayetiola destructor Say is a major pest of durum wheat (Triticum durum Desf.) and bread wheat (T. aestivum L.). Genetic resistance is the most efficient and economical method of control of this pest. To date, 31 resistance genes, designated H1-H31, have been identified in wheat. These genes condition resistance to the insect genes responsible for virulence. Using wheat cultivars differing for the presence of an individual Hessian fly resistance gene and random amplified polymorphic DNA (RAPD) analysis, we have identified a polymorphic 386-bp DNA marker (Xgmib1-1A.1) associated with the H11 Hessian fly resistance gene. Blast analysis showed a high identity with a short region in the wild wheat (T. monococcum) genome, adjacent to the leaf rust resistance Lr10 gene. A genetic linkage was reported between this gene (Lr10) and Hessian fly response in wheat. These data were used for screening Hessian fly resistance in Tunisian wheat germplasm. Xgmib1-1A.1-like fragments were detected in four Tunisian durum and bread wheat varieties. Using these varieties in Hessian fly breeding programs in Tunisia would be of benefit in reducing the damage caused by this fly.  相似文献   

3.
A new Hessian fly (Mayetiola destructor Say) resistance gene from Aegilops triuncialis and its transfer to hexaploid wheat via interspecific hybridisation is described. The transfer line TR-3531 (42 chromosomes), derived from the cross [(Triticum turgidum x Ae. triuncialis) x Triticum aestivum] and carrying the Heterodera avenae resistance gene Cre7, showed a high level of resistance to the M. destructor biotype prevailing in the SW of Spain. A single dominant gene (H30) seems to determine the Hessian fly resistance in this introgression line, and its linkage with an isozyme marker (Acph-U1) has also been studied. It has been demonstrated that the resistance gene H30 in the TR-3531 line is non-allelic with respect to the genes H3, H6, H9, H11, H12, H13, H18 and H21, present in wheat cultivars from the Uniform Hessian Fly Nursery (UHFN), as well as to H27, carried by the introgression line H-93-33. Advanced lines with the H30 gene were obtained by backcrossing the transfer line and different commercial wheats as recurrent parents. Several of them showed a high yield in tests carried out in the infested field. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00122-002-1182-z. On that page (frame on the left side), a link takes you directly to the supplementary material.  相似文献   

4.
The genotypic interaction between wheat resistance genes H3, H6, H7H8, H9 and virulence genes vH3, vH6, vH7vH8, vH9 of Hessian fly, Mayetiola destructor (Say), was studied in a growth chamber. Results showed that plants homozygous and heterozygous for the H3 gene expressed a high level of resistance against homozygous avirulent and heterozygous larvae carrying the vH3 virulence allele. The H7H8 genes were highly effective in the homozygous condition, but displayed a reduced level of resistance in the heterozygous condition. The H6 and H9 genes showed different levels of resistance against the reciprocal heterozygous larvae (vH6(a)vH6(A) versus vH6(A)vH6(a) and vH9(a)vH9(A) versus vH9(A)vH9(a)). Adults reared from vH6(a)vH6(A) and vH9(a)vH9(A) larvae were all males, consistent with the vH6 and vH9 X-linkage. Plants homozygous for H3, H6, H7H8, and H9 allowed for greater larval survival of heterozygous larvae, which suggests that avirulence to these resistance genes is incompletely dominant. Greater survival of homozygous avirulent larvae on heterozygous plants (H3h3, H6h6, H7h7H8h8, H9h9) suggests incomplete dominance of these wheat genes. Survival of heterozygous along with homozygous virulent larvae would reduce selection pressure for virulence in Hessian fly populations infesting fields of resistant wheat cultivars. This would be expected to slow the increase in frequency of virulence alleles that often results from deployment of resistant cultivars.  相似文献   

5.
Twenty-three Hessian fly, Mayetiola destructor (Say), populations collected in the southeastern (Alabama and Mississippi), midwestern (Indiana), and northwestern (Idaho and Washington) United States from 1995 to 1999 were evaluated for biotype composition based on response to Hessian fly resistance genes H3, H5, H6, and H7H8 in wheat, Triticum aestivum L. Biotypes L and O, combined, made up at least 60% of all Alabama populations. Biotype L was predominant in the northern third of Alabama and biotype O in the southern two-thirds of the state. Based on biotype data, wheat cultivars with H7H8 resistance should be highly effective in central and southern Alabama. Fifty-four percent of the Mississippi population consisted of biotype L, and the remaining virulent biotypes (B, D, E, G, J, and O) ranged in frequency from 1 to 17%. The Mississippi population also contained 4% of the avirulent biotype GP. Only biotypes D and L were found in Indiana populations, but biotype L was predominant. Hessian fly populations from Idaho and Washington contained one or more of the virulent biotypes D-H, J, and L-O; however, only biotypes E, F, and G occurred at frequencies > 12%. The avirulent biotype GP made up 25-57% of Idaho and Washington populations, a much higher percentage than found in populations from the eastern United States. Although the highest level of virulence in Idaho and Washington populations was found to resistance genes H3 and H6, the frequency of biotype GP would indicate that the currently deployed gene H3 would provide a moderate to high level of resistance, depending on location. Nine of the populations, plus populations collected from the mid-Atlantic state area in 1989 and 1996, also were tested against the wheat cultivar 'INW9811' that carries H13 resistance to Hessian fly biotype L and two Purdue wheat lines with unidentified genes for resistance. The H13 resistance in INW9811 was highly effective against all populations tested from the eastern and northwestern U.S. wheat production areas, except Maryland and Virginia. Population studies also indicated that wheat line CI 17960-1-1-2-4-2-10 likely carries the H13 resistance gene, based on the similarity of its response and that of INW9811 to eight fly populations. Continued monitoring of biotype frequency in Hessian fly populations is required for optimal deployment and management of resistance genes in all wheat production areas.  相似文献   

6.
Damage caused by Hessian fly, Mayetiola destructor (Say), was quantified in spring wheat, Triticum aestivum L., trials near Pendleton and Moro, OR, during 2001 and 2002. Five field experiments were established to examine genetic resistance to Fusarium crown rot, Fusarium pseudograminearum (O'Donnell & Aoki), and economic damage by lesion nematode, Pratylenchus neglectus (Rensch, 1924) (Filipjev Schuurmanns & Stekhoven, 1941) and Pratylenchus thornei (Sher & Allen, 1941). Hessian fly became the dominant factor affecting grain yield in four experiments. Genotypes carrying the H3-resistance gene had grain yields 66 and 68% higher than susceptible genotypes in cultivar trials during 2001 and 2002, respectively. Yield reductions were detected when Hessian fly infestation rates exceeded 50% plants during 2001 and 15% plants (8% tillers) during 2002. In two trials during 2001, in-furrow application of aldicarb (Temik) at planting improved yields of four Hessian fly-susceptible cultivars by 72 and 144% (up to 1,959 kg/ha) and yields of one Hessian fly-resistant cultivar by 2 and 3%. Resistant cultivars and aldicarb improved grain quality as much as two market grades during 2001. The value of increased grain production with Hessian fly-resistant cultivars in four field experiments ranged from dollar 112 to dollar 252/ha, excluding price incentives for improved market quality. Yield reduction due to combined damage from Hessian fly and either Fusarium crown rot or lesion nematode was additive. This report seems to be the first quantitative yield loss estimate for Hessian fly in spring wheat in the semiarid environment of the inland Pacific Northwest.  相似文献   

7.
Elshibli S  Korpelainen H 《Genetica》2008,134(2):251-260
Genetic diversity in date palm germplasm from Sudan representing 37 female and 23 male accessions was investigated using 16 loci of microsatellite (SSR) primers. Eight female accessions from Morocco were included as reference material. The tested SSR markers showed a high level of polymorphism. A total of 343 alleles were detected at the 16 loci. The number of alleles per marker ranged from 14 to 44 with an average of 21.4 per locus. A high level of expected heterozygosity was observed among Sudan cultivars (0.841), Morocco cultivars (0.820) and male accessions (0.799). The results indicate that the genetic groups of the Sudan cultivars and/or males do not follow a clear geographic pattern. However, the morocco group showed significant differentiation in relation to the Sudan groups, as measured by F (ST) values and genetic distances. The effect of the methods of pollination and cultivar selection on the genetic structure was clearly detected by the weak clustering association that was observed for the majority of accessions originating from Sudan and Morocco as well. This suggests the need for further investigation on the genetic diversity of Sudanese date palm germplasm. A deeper insight will be revealed by a detailed analysis of populations originating from different geographic locations.  相似文献   

8.
The genus Melittobia Westwood comprises several species of microparasitoids and only two of them are know to occur in Brazil up to now: M. australica Girault and M. hawaiiensis Perkins. Nevertheless, the differentiation between these two species using traditional taxonomy is very difficult. In the present study, we used random amplified polymorphic DNA chain reaction (RAPD-PCR) to test for its ability to discriminate between these two species and to examine the genetic variation among the studied populations of M. australica. Most of the generated fragments were species-specific, occurring in all individuals of one species and absent in the individuals of the other species demonstrating the appropriateness of such technique to distinguish between both of the Melittobia species occurring in Brazil. RAPD-PCR also demonstrated low variability among different populations of M. australica, which may be due to a founder effect and/or high dispersion capacity of these populations. Genetic distances within (D = 1.19-3.54%) and among populations (D = 1.93-5.28%) presented very low values, reflecting the reduced genetic variation that exists among populations of M. australica.  相似文献   

9.
Pathogenic and genetic variability among seven populations of Phytophthora parasitica var. nicotianae from individual tobacco fields (Yunnan, Shandong, Henan, Heilongjiang, Shanxi, Fujian and Sichuan provinces) were investigated using pathogenicity and randomly amplified polymorphic DNA (RAPD) analyses; 63 strains were isolated from different fields of seven tobacco growing regions, using tobacco cv. Hongda as a baiting host. Pathogenic variability was evaluated in greenhouse studies using five tobacco cultivars that have different levels of resistance to tobacco black shank; 75 and 73% of the strains were pathogenic on M3 and M4, 29 and 33% on M1 and M2, and 94% were pathogenic on M5, respectively. Disease severity incited by different strains varied significantly on individual tobacco cultivars. The percentage of strains pathogenic on different cultivars varied among locations. Genotypic variation among 63 strains was evaluated by RAPD analysis. Ten primers detected 89 polymorphic bands. Cluster and principal coordinates analysed cluster groups. the minor group contained 26 strains, and major group contained 37 strains. Estimates of genetic diversity based on RAPD analysis ranged from 0.24 to 0.34 within populations to 0.36 among all strains from all populations. Phytophthora parasitica var. nicotianae populations were genotypically and phenotypically variable, but no distinct genotypic differences were identified among populations from the seven locations.  相似文献   

10.
Summary The Avena sterilis collection in the National Small Grains Collection (NSGC) is an invaluable source of genetic variation to be exploited by oat breeding programs. Prior knowledge of the structure and distribution of genetic variation within the A. sterilis collection would be useful to efficiently screen the collection for valuable traits. To determine genetic structure within a subset of the collection, restriction fragment length polymorphisms were analyzed in a stratified sample of 173 accessions originating in eight countries of Africa and Southwest Asia. Of the 48 probes used for this study 43 detected polymorphism among accessions. The average number of RFLP patterns per probe ranged from 2.9 among Ethiopian accessions to 3.7 among those from Iran. Genetic variation, as measured by genetic distances and polymorphic indexes, was highest in Iran and lowest in Ethiopia. The probability of drawing a genotype from Iran or Iraq that is not present in the more western regions was high, indicating large genetic divergence of the Iran-Iraq accessions from the other regional collections surveyed. Cluster analysis of genetic distances and probabilities of unique genotypes clearly differentiated the eastern region (Iran and Iraq) from the western region (Algeria, Ethiopia, Israel, Lebanon, Morocco, and Syria). The western region could be further subdivided into two clusters, an African cluster (Algeria, Ethiopia, and Morocco) and a southwestern Asia cluster (Israel, Lebanon, and Syria). Genetic distances were generally related to but not proportional to geographical distances.  相似文献   

11.
Chromosome landing near avirulence gene vH13 in the Hessian fly.   总被引:5,自引:0,他引:5  
AFLP markers in linkage disequilibrium with vH13, an avirulence gene in the Hessian fly (Mayetiola destructor) that conditions avirulence to resistance gene H13 in wheat (Triticum spp.), were discovered by bulked segregant analysis. Five AFLPs were converted into codominant site-specific markers that genetically mapped within 13 cM of this gene. Flanking markers used as probes positioned vH13 near the telomere of the short arm of Hessian fly chromosome X2. These results suggest that the X-linked avirulence genes vH6, vH9, and vH13 are present on Hessian fly chromosome X2 rather than on chromosome X1 as reported previously. Genetic complementation demonstrated that recessive alleles of vH13 were responsible for the H13-virulence observed in populations derived from four different states in the U.S.A.: Georgia, Maryland, Virginia, and Washington. Results support the hypothesis that a gene-for-gene interaction exists between wheat and Hessian fly.  相似文献   

12.
小麦黑森瘿蚊Mayetiola destructor Say和大麦茎干瘿蚊M. hordei Kieffer是在突尼斯每年都可导致谷物重大损失的两个植食性姊妹种。通常认为为害小麦的瘿蚊是小麦黑森瘿蚊,但是不同谷类物种(小麦或大麦)与麦瘿蚊的这两个种( destructorhordei )之间寄主关系并不很严格。提出有效的害虫管理方案首先要求对瘿蚊基因型进行精确分析。本研究应用随机扩增多态DNA(RAPD)技术,结合交配分析和线粒体DNA分型技术,对位于突尼斯北部的一个为害小麦的麦瘿蚊种群的遗传变异程度和分类关联性进行了评估。基于RAPD结果的系统发育分析表明,所研究的种群具有较大的遗传变异范围,这可能源于被分析的小麦样品有被两种瘿蚊共同侵害的复杂背景。虽然交配分析表明有少数不能成功产卵(2/14),但是基于细胞色素b基因限制性酶切分析显示全部样品的线粒体分型均属M. destructor。本文结果进一步证明以RAPD可变性作为分类推断依据不可靠,还为突尼斯M. destructorM. hordei属于异域分布的观点提供了补充证据。  相似文献   

13.
The PCR-RFLP technique was used to detect chloroplast DNA diversity in wild populations of Prunus avium from five European deciduous forests and some cultivars. A study of 10.8% of the total chloroplast genome detected eight insertion-deletion (indel) mutations, distributed over 12 haplotypes. Six haplotypes (H1, H2, H3, H4, H5 and H6) were found in wild populations and eight (H2, H6, H7, H8, H9, H10, H11 and H12) in the cultivars. Only two haplotypes (H2 and H6) are shared by the wild populations and the cultivars. The most-abundant and frequent haplotype in wild populations is H2 (frequency=78%). The wider geographical distribution along with the high frequency reflects its ancient origin. Of the five populations, three are polymorphic. Populations GA (Scotland) and KE (Germany) have unique haplotypes. The total cpDNA diversity in wild populations is hT=0.40, and a major portion of it is within populations (hS=0.37). The genetic differentiation among populations was low (GSTC=0.08) and no genetic structure among wild populations was observed. A minimum-length spanning tree, demonstrating relationships among the haplotypes in wild populations, indicated two possible chloroplast lineages. The ten identified cultivars were represented by seven haplotypes; this result proposes the possible utilisation of the PCR-RFLP technique for the characterisation of sweet cherry cultivars. The cpDNA diversity in P. avium should be considered carefully for phylogenetic studies involving this species. Received: 10 July 2000 / Accepted: 19 October 2000  相似文献   

14.
重金属污染下曼陀罗种群分化的RAPD分析   总被引:12,自引:1,他引:11  
将不同空间地段上获得的同一种质但污染年代各不相同的4个曼陀罗材料种子易地种植在同一模拟重金属污染生境中,对这4个曼陀罗种群进行RAPD分析,结果表明,在105个检测位点中发现有78个位点呈多态性。在这些多态位点中未发现与重金属抗性有关的特异性多态DNA片段。S hannon-Weiner指数计算结果表明,在短期污染时间内曼陀罗种群遗传多样性水平降低。随着污染时间的推移,曼陀罗种群逐渐在污染迹地上稳定下来,曼陀罗种群遗传多样性水平有所回升和提高,4个曼陀罗种群遗传多样性由高到低排列顺序为L>CK>M>S。遗传多样性指数表明曼陀罗种群间变异程度远小于种群内的遗传变异。4个种群两两间遗传距离较小,遗传距离最大的种群为L和S,最小的为L和CK种群。因此,在重金属胁迫环境选择下,曼陀罗种群发生了一定程度的分化与微进化,轻高水平的遗传多样性可能是植物适应重金属污染胁迫环境的基础。  相似文献   

15.
The Hessian fly, Mayetiola destructor (Say), is an important insect pest of wheat (Triticum spp.) in North Africa, North America, southern Europe and northern Kazakhstan. Both wheat and this pest are believed to have originated from West Asia in the Fertile Crescent. The virulence of a Hessian fly population from Syria against a set of cultivars carrying different resistance genes, in addition to other effective sources with unknown genes, was determined in the field and laboratory at the International Center for Agricultural Research in the Dry Areas (ICARDA) during the 2005/2006 cropping season. Only two resistance genes (H25 and H26) were effective against the Syrian Hessian fly population, making it the most virulent worldwide. This high virulence supports the hypothesis that Hessian fly coevolved with wheat in the Fertile Crescent of West Asia. The ICARDA screening programme is using this Hessian fly population to identify new resistance genes to this pest.  相似文献   

16.
RAPD-PCR was used to determine the genetic variation of Metopolophium dirhodum collected in a winter wheat field and in a nearby 2.5-m-high suction trap at Lincoln, New Zealand. Over three collection dates, five distinct genotypes were identified, using two primers (OPK16 and OPC09) independently. There was a significant temporal effect on the ratio of genotypes in populations collected in the field. There was no significant spatial aggregation or association of these genotypes in the field. Two of the genotypes present in the field were also detected in the suction trap sample. Using a higher resolution method of RAPD-PCR (with the Stoffel fragment of Taq polymerase), a total of 124 genotypes were distinguished from 142 individuals collected from Scotland and New Zealand. The Jaccard similarity index ( S ) was used to measure similarity between individual aphids within and between populations from both hemispheres. All populations were very diverse ( S < 0.33). However, at similar crop growth stages, M. dirhodum was significantly more diverse in Scotland than in New Zealand. The results are discussed in relation to the value of monitoring aphid flights for pest forecasting, and in terms of the most appropriate RAPD-PCR techniques.  相似文献   

17.
Genetic resistance in wheat, Triticum aestivum L., is the most efficacious method for control of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). However, because of the appearance of new genotypes (biotypes) in response to deployment of resistance, field collections of Hessian fly need to be evaluated on a regular basis to provide breeders and producers information on the efficacy of resistance (R) genes with respect to the genotype composition of Hessian fly in regional areas. We report here on the efficacy of 21 R genes in wheat to field collections of Hessian fly from the southeastern United States. Results documented that of the 21 R genes evaluated only five would provide effective protection of wheat from Hessian fly in the southeastern United States. These genes were H12, H18, H24, H25, and H26. Although not all of the 33 identified R genes were evaluated in the current study, these results indicate that identified genetic resistance to protect wheat from Hessian attack in the southeastern United States is a limited resource. Historically, R genes for Hessian fly resistance in wheat have been deployed as single gene releases. Although this strategy has been successful in the past, we recommend that in the future deployment of combinations of highly effective previously undeployed genes, such as H24 and H26, be considered. Our study also highlights the need to identify new and effective sources of resistance in wheat to Hessian fly if genetic resistance is to continue as a viable option for protection of wheat in the southeastern United States.  相似文献   

18.
Hessian fly, Mayetiola destructor (Say), is a residue-borne pest of spring wheat that can become important in reduced tillage production systems. The relative abundance of Hessian fly was examined on spring wheat cultivars grown under conventional tillage (CT) and no-tillage (NT) practices in northern Idaho from 2000 to 2002. Six cultivars were tested: Hessian fly-susceptible 'Penawawa' and'Westbred 936' and -resistant (H3 gene) 'Wawawai', 'Jefferson', 'Hank', and 'Westbred 926.' Hessian fly egg densities were not significantly different among treatments, indicating ovipositing females showed no preference for tillage treatment or cultivar. Mean number of Hessian fly puparia per plant was significantly greater in CT plots during the last sampling in 2000; however, in 2001, NT plots had significantly more puparia than CT plots. Tillage had no significant effect on mean Hessian fly per plant in 2002. Significantly more puparia were observed on susceptible compared with resistant cultivars in 2000 and 2002. In 2001, susceptible Penawawa had significantly more puparia than resistant cultivars, whereas puparial densities on susceptible Westbred 936 were higher than on resistant cultivars other than Wawawai. Yield and 100-seed weight were not affected by tillage treatment. Significant variation in yield among cultivars was observed only in 2000, when fly-resistant Hank yielded the highest. Hank had the highest 100-seed weight in 2000 and 2001, whereas Penawawa and Jefferson had the lowest 100-seed weights each year. Reduced tillage had no consistent effect on spring wheat yield or abundance of Hessian fly under the conditions of our trials, which evaluated small plots.  相似文献   

19.
In the alpine landscape most plant populations are spatially isolated due to extreme patchiness and strong natural fragmentation. We used RAPD-PCR (randomly amplified polymorphic DNA polymerase chain reaction) for a study of the genetic diversity within and among 20 populations of Geum reptans, an outcrossing clonal plant species in the Swiss Alps. Populations were sampled at different altitudes, in early-, medium- and late-successional habitats (population origin) using a spatially hierarchical design, with distances among populations ranging from 0.2 to 208 km. Seed and pollen dispersibility was estimated by direct measurements. Seed dispersibility by wind was low with only 0.015% of the seeds flying over 100 m. Observed pollen flow was even more restricted. Molecular diversity within populations was irrespective of population origin (H(e) = 0.22 ± 0.004) and similar to the average of other RAPD studies. Contrary to our expectation, populations were only moderately differentiated (G(st) = 0.14). However, there was a clear spatial genetic structure and a positive relationship between pairwise genetic and geographic distances. Our results indicate considerable gene flow among populations within the same regional area, and we found no indication for genetic depletion during succession or in peripheral habitats. We conclude that, despite the high natural fragmentation and the importance of vegetative reproduction in this alpine plant, gene flow and repeated seedling recruitment during succession might be more frequent than commonly suggested.  相似文献   

20.
We used native polyacrylamide gel electrophoresis to identify polymorphism levels in α- and β-esterase loci from leaf tissues of Brazilian soybean cultivars for the analysis of population genetic diversity and structure, and to investigate relationships between conventional and genetically modified cultivars. The cultivars included lines developed by a soybean-grower cooperative (CD), by EMBRAPA (BR), and "Roundup Ready" (RR) cultivars. Esterase isozymes recorded with α-naphthyl acetate and β-naphthyl acetate were produced from 14 loci. Two to three allelic variants were detected in leaves from 420 plants of 21 CD, BR, and RR cultivars at Est-1, Est-2, Est-3, Est-5, and Est-14 loci. The estimated proportion of polymorphic loci in CD cultivars was 21.4%, and in BR and RR cultivars it was 28.6%. High and low H(O) and H(E) values were observed within CD and BR cultivars and a very high cultivar differentiation level was evident in the plants of the 21 CD, BR, and RR cultivars (F(ST) = 0.3865). A low level of differentiation (F(ST) = 0.0289) was detected between conventional and RR cultivars. Plants from cultivar BR37 had the highest level of genetic differentiation compared to the other cultivars. The genetic basis of BR cultivars (0.5538-0.9748) was found to be broader than the genetic basis of CD cultivars (0.7058 for CD205 and CD209 and 0.9995 for CD205 and CD208). Higher genetic identity was detected between plants of CD and CDRR cultivars (I = 0.9816). Understanding the genetic structure of these populations can help provide specific culture strategies for each cultivar, depending on its level of heterozygosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号