首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial ischemia-reperfusion activates the Na(+)/H(+) exchanger, which induces arrhythmias, cell damage, and eventually cell death. Inhibition of the exchanger reduces cell damage and lowers the incidence of arrhythmias after ischemia-reperfusion. The omega-3 polyunsaturated fatty acids (PUFAs) are also known to be cardioprotective and antiarrhythmic during ischemia-reperfusion challenge. Some of the action of PUFAs may occur via inhibition of the Na(+)/H(+) exchanger. The purpose of our study was to determine the capacity for selected PUFAs to alter cardiac sarcolemmal (SL) Na(+)/H(+) exchange. Cardiac membranes highly enriched in SL vesicles were exposed to 10-100 microM eicosapentanoic acid (EPA) or docosahexanoic acid (DHA). H(+)-dependent (22)Na(+) uptake was inhibited by 30-50% after treatment with > or =50 microM EPA or > or =25 microM DHA. This was a specific effect of these PUFAs, because 50 microM linoleic acid or linolenic acid had no significant effect on Na(+)/H(+) exchange. The SL vesicles did not exhibit an increase in passive Na(+) efflux after PUFA treatment. In conclusion, EPA and DHA can potently inhibit cardiac SL Na(+)/H(+) exchange at physiologically relevant concentrations. This may explain, in part, their known cardioprotective effects and antiarrhythmic actions during ischemia-reperfusion.  相似文献   

2.
The transport of Na+ by a purified sarcolemmal vesicular preparation from canine ventricular tissue was studied as a function of both internal and external pH. The uptake of Na+ into sarcolemmal vesicles increased upon raising the extravesicular pH of the reaction medium. Half-maximal uptake of Na+ was observed at a pHo of about 8.1 and maximal uptake occurred at pH 8.6. The uptake of Na+ by sarcolemma was also dependent upon the intravesicular pH. Na+ uptake into sarcolemmal vesicles was greatly attenuated in the absence of a H+ gradient across the membrane. Transport of Na+ was potently inhibited by amiloride, a known blocker of Na+-H+ exchange. LiCl was also an effective inhibitor of Na+ transport. In the presence of optimal H+ gradients, Na+ uptake was linear for the first 5 seconds of the reaction and exhibited a Vmax of 290 nmol Na+/mg per min and a KNa of 3.5 mM. These experiments strongly indicate the presence of a Na+-H+ exchange system in cardiac sarcolemma. This activity appeared to be relatively specific for this membrane fraction. The identification of Na+-H+ exchange activity in a sarcolemmal vesicular fraction from the heart will permit extensive characterization of the regulation and kinetics of this antiporter in future investigations.  相似文献   

3.
Treatment of canine cardiac sarcolemmal vesicles with phospholipase D resulted in a large stimulation (up to 400%) of Na+-Ca2+ exchange activity. The phospholipase D treatment decreased the apparent Km (Ca2+) for the initial rate of Nai+-dependent Ca2+ uptake from 18.2 +/- 2.6 to 6.3 +/- 0.3 microM. The Vmax increased from 18.0 +/- 3.6 to 31.5 +/- 3.6 nmol of Ca2+/mg of protein/s. The effect was specific for Na+-Ca2+ exchange; other sarcolemmal transport enzymes ((Na+, K+)-ATPase; ATP-dependent Ca2+ transport) are inhibited by incubation with phospholipase D. Phospholipase D had little effect on the passive Ca2+ permeability of the sarcolemmal vesicles. After treatment with 0.4 unit/ml of phospholipase D (20 min, 37 degrees C), the sarcolemmal content of phosphatidic acid rose from 0.9 +/- 0.2 to 8.9 +/- 0.4%; simultaneously, Na+-Ca2+ exchange activity increased 327 +/- 87%. It is probable that the elevated phosphatidic acid level is responsible for the enhanced Na+-Ca2+ exchange activity. In a previous study (Philipson, K. D., Frank, J. S., and Nishimoto, A. Y. (1983) J. Biol. Chem. 258, 5905-5910), we hypothesized that negatively charged phospholipids were important in Na+-Ca2+ exchange, and the present results are consistent with this hypothesis. Stimulation of Na+-Ca2+ exchange by phosphatidic acid may be important in explaining the Ca2+ influx which accompanies the phosphatidylinositol turnover response which occurs in a wide variety of tissues.  相似文献   

4.
Fluid secretion and intracellular pH were measured in isolated mosquito Malpighian tubules to determine the presence of Na(+)/H(+) exchange. Rates of fluid secretion by individual Malpighian tubules in vitro were inhibited by 78% of control in the presence of 100 microM 5-(N-ethyl-n-isopropyl)-amiloride (EIPA), a specific inhibitor of Na(+)/H(+) exchange. Steady-state intracellular pH was measured microfluorometrically by using 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in individual Malpighian tubules. Bathing the Malpighian tubules in 0 mM extracellular Na(+) or in the presence of 100 microM EIPA reduced the steady-state intracellular pH by 0.5 pH units. Stimulation of the Na(+)/H(+) exchanger by using the NH(4)Cl pulse technique resulted in a rate of recovery from the NH(4)Cl-induced acute acid load of 8.7 +/- 1.0 x 10(-3) pH/s. The rates of recovery of intracellular pH after the acute acid load in the absence of extracellular Na(+) or in the presence of 100 microM EIPA were 0.7 +/- 0.6 and -0.3 +/- 0.3 x 10(-3) pH/s, respectively. These results indicate that mosquito Malpighian tubules possess a Na(+)/H(+) exchanger.  相似文献   

5.
The sodium-calcium exchange activity has been studied in sarcolemmal vesicles isolated from rat ventricles hypertrophied by pressure overload. 4 weeks after aortic stenosis the degree of hypertrophy varied from 30 to 70%. The Na+-dependent 45Ca2+ influx and efflux were up to 50% decreased and the sensitivity to Ca2+ was 13-fold lower in vesicles from hypertrophied heart as compared to those from normal heart. However, the Na+,K+-ATPase activity, the orientation of the vesicles and the passive Ca2+ permeability were found to be similar in the two heart groups. These results indicate that the sarcolemmal Na+/Ca2+ exchange activity could be qualitatively and/or quantitatively changed in hypertrophied rat heart.  相似文献   

6.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake into the sarcolemmal vesicles (with starting intravesicular pH = 6 and extravesicular pH = 8) was approximately 20 nmol/mg protein. The extravesicular Km of the Na+/H+ exchange activity for Na+ was determined to be between 2 and 4 mM (intravesicular pH = 5.9, extravesicular pH = 7.9), as assessed by measuring the concentration dependence of the 22Na uptake rate and the ability of extravesicular Na+ to collapse an imposed H+ gradient. All results suggested that Na+/H+ exchange was reversible and tightly coupled. The Na+/H+ exchange activity was assayed in membrane subfractions and found most concentrated in highly purified cardiac sarcolemmal vesicles and was absent from free and junctional sarcoplasmic reticulum vesicles. 22Na uptake into sarcolemmal vesicles mediated by Na+/H+ exchange was dependent on extravesicular pH, having an optimum around pH 9 (initial internal pH = 6). Although the Na+/H+ exchange activity was not inhibited by tetrodotoxin or digitoxin, it was inhibited by quinidine, quinacrine, amiloride, and several amiloride derivatives. The relative potencies of the various inhibitors tested were found to be: quinacrine greater than quinidine = ethylisopropylamiloride greater than methylisopropylamiloride greater than dimethylamiloride greater than amiloride. The Na+/H+ exchange activity identified in purified cardiac sarcolemmal vesicles appears to be qualitatively similar to Na+/H+ exchange activities recently described in intact cell systems. Isolated cardiac sarcolemmal vesicles should prove a useful model system for the study of Na+/H+ exchange regulation in myocardial tissue.  相似文献   

7.
Na(+)/H(+) antiporters   总被引:10,自引:0,他引:10  
  相似文献   

8.
In cardiacsarcolemmal vesicles, MgATP stimulatesNa+/Ca2+exchange with the following characteristics:1) increases 10-fold the apparentaffinity for cytosolic Ca2+;2) a Michaelis constant for ATP of~500 µM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory;4) not observed in the presence of20 µM eosin alone but reinstated when vanadate is added;5) mimicked by adenosine5'-O-(3-thiotriphosphate), without the need for vanadate, but not by ,-methyleneadenosine 5'-triphosphate; and 6) notaffected by unspecific protein alkaline phosphatase but abolished by aphosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLCeffect is counteracted by phosphatidylinositol. In addition, in theabsence of ATP,L--phosphatidylinositol4,5-bisphosphate (PIP2) was ableto stimulate the exchanger activity in vesicles pretreated with PI-PLC.This MgATP stimulation is not related to phosphorylation of thecarrier, whereas phosphorylation appeared in the phosphoinositides,mainly PIP2, thatcoimmunoprecipitate with the exchanger. Vesicles incubated with MgATPand no Ca2+ show a markedsynthesis ofL--phosphatidylinositol4-monophosphate (PIP) with little production ofPIP2; in the presence of 1 µM Ca2+, the net synthesis of PIP issmaller, whereas that of PIP2increases ninefold. These results indicate thatPIP2 is involved in the MgATPstimulation of the cardiacNa+/Ca2+exchanger through a fast phosphorylation chain: aCa2+-independent PIP formationfollowed by a Ca2+-dependentsynthesis of PIP2.

  相似文献   

9.
ATP-dependent Na+ transport in cardiac sarcolemmal vesicles   总被引:3,自引:0,他引:3  
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

10.
We have examined the effect of membrane methylation on the Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles using S-adenosyl-L-methionine as methyl donor. Methylation leads to approximately 40% inhibition of the initial rate of Nai+-dependent Ca2+ uptake. The inhibition is due to a lowering of the Vmax for the reaction. The inhibition is not due to an effect on membrane permeability and is blocked by S-adenosyl-L-homocysteine, an inhibitor of methylation reactions. The following experiments indicated that inhibition of Na+-Ca2+ exchange was due to methylation of membrane protein and not due to methylated phosphatidylethanolamine (PE) compounds (i.e., phosphatidyl-N-monomethylethanolamine (PMME) or phosphatidyl-N,N'-dimethylethanolamine (PDME]: (1) We solubilized sarcolemma and reconstituted activity into vesicles containing no PE. The inhibition by S-adenosyl-L-methionine was not diminished in this environment. (2) We reconstituted sarcolemma into vesicles containing PMME or PDME. These methylated lipid components had no effect on Na+-Ca2+ exchange activity. (3) We verified that many membrane proteins, probably including the exchanger, become methylated.  相似文献   

11.
The carrier-mediated, electroneutral exchange of Na(+) for H(+) across the plasma membrane does not directly consume metabolic energy. Nevertheless, acute depletion of cellular ATP markedly decreases transport. We analyzed the possible involvement of polyphosphoinositides in the metabolic regulation of NHE1, the ubiquitous isoform of the Na(+)/H(+) exchanger. Depletion of ATP was accompanied by a marked reduction of plasmalemmal phosphatidylinositol 4,5-bisphosphate (PIP(2)) content. Moreover, sequestration or hydrolysis of plasmalemmal PIP(2), in the absence of ATP depletion, was associated with profound inhibition of NHE1 activity. Examination of the primary structure of the COOH-terminal domain of NHE1 revealed two potential PIP(2)-binding motifs. Fusion proteins encoding these motifs bound PIP(2) in vitro. When transfected into antiport-deficient cells, mutant forms of NHE1 lacking the putative PIP(2)-binding domains had greatly reduced transport capability, implying that association with PIP(2) is required for optimal activity. These findings suggest that NHE1 activity is modulated by phosphoinositides and that the inhibitory effect of ATP depletion may be attributable, at least in part, to the accompanying net dephosphorylation of PIP(2).  相似文献   

12.
Na+-H+ exchange and passive Na+ flux were investigated in cardiac sarcolemmal vesicles as a function of changing the ionic composition of the reaction media. The inclusion of EGTA in the reaction medium resulted in a potent stumulation of Na+ uptake by Na+-H+ exchange. It was found that millimolar concentrations of Mg2+ and Li+ were capable of inhibiting Na+-H+ exchange by 80%. One mechanism by which these ions may inhibit intravesicular Na+ accumulation by Na+-H+ exchange is via an increase in Na+ efflux. An examination of Na+ efflux kinetics from vesicles pre-loaded with Na+ revealed that Na+, Ca2+, Mg2+ and Li+ could stimulate Na+ efflux. Na+-H+ exchange was potently inhibited by an organic divalent cation, dimenthonium, which screens membrane surface charge. This would suggest that Na+-H+ exchange occurs in the diffuse double layer region of cardiac sarcolemma and this phenomenon is distinctly different from other Na+ transport processes. The results in this study indicate that in addition to a stimulation of Na+ efflux, the inhibitory effects of Mg2+, Ca2+ and Li+ on Na+-H+ exchange may also involve a charge dependent screening of Na+ interactions with the membrane.  相似文献   

13.
1. Harmaline was found to inhibit the Na+-Ca2+ exchange mechanism present in cardiac sarcolemmal vesicles. 2. The inhibition was dose-dependent and was observed in the range 10(-5) M-10(-2) M harmaline. 3. The effect was demonstrated on both 45Ca2+-uptake and 45Ca2+-efflux. 4. The observed Ki value for harmaline inhibition of 45Ca2+-uptake was found to be 2.5 X 10(-4) M.  相似文献   

14.
The Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles can catalyze the exchange of Ca2+ on either side of the sarcolemmal membrane for Na+ on the opposing side. Little is known regarding the relative affinities of Na+ and Ca2+ for exchanger binding sites on the intra- and extracellular membrane surfaces. We have previously reported (Philipson, K.D. and Nishimoto, A.Y. (1982) J. Biol. Chem. 257, 5111-5117) a method for measuring the Na+-Ca2+ exchange of only the inside-out vesicles in a mixed population of sarcolemmal vesicles (predominantly right-side-out). We concluded that the apparent Km(Ca2+) for Na+i-dependent Ca2+ uptake was similar for inside-out and right-side-out vesicles. In the present study, we examine in detail Na+o-dependent Ca2+ efflux from both the inside-out and the total population of vesicles. To load vesicles with Ca2+ prior to measurement of Ca2+ efflux, four methods are used: 1, Na+-Ca2+ exchange; 2, passive Ca2+ diffusion; 3, ATP-dependent Ca2+ uptake; 4, exchange of Ca2+ for Na+ which has been actively transported into vesicles by the Na+ pump. The first two methods load all sarcolemmal vesicles with Ca2+, while the latter two methods selectively load inside-out vesicles with Ca2+. We are able to conclude that the dependence of Ca2+ efflux on the external Na+ concentration is similar in inside-out and right-side-out vesicles. Thus the apparent Km(Na+) values (approximately equal to 30 mM) of the Na+-Ca2+ exchanger are similar on the two surfaces of the sarcolemmal membrane. In other experiments, external Na+ inhibited the Na+i-dependent Ca2+ uptake of the total population of vesicles much more potently than that of the inside-out vesicles. Apparently Na+ can compete for the Ca2+ binding site more effectively on the external surface of right-side-out than on the external surface of inside-out vesicles. Thus, although affinities for Na+ or Ca2+ (in the absence of the other ion) appear symmetrical, the interactions between Na+ and Ca2+ at the two sides of the exchanger are not the same. The Na+-Ca2+ exchanger is not a completely symmetrical transport protein.  相似文献   

15.
The pyrazine diuretic amiloride inhibits the Na+/Ca2+ exchange activity of cardiac sarcolemmal vesicles in a concentration-dependent way. A good relationship between the uptake of amiloride by the vesicles and the inhibition of the exchanger has been found. Kinetic analyses indicate that the inhibition of Na+/Ca2+ exchange activity by amiloride is non-competitively removed by Ca2+ and competitively overcome by an outwardly directed Na+ gradient.  相似文献   

16.
Exposure of canine cardiac sarcolemmal vesicles to alkaline media (greater than or equal to pH 12) results in the extraction of 33% of the protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that specific proteins are being solubilized. Most of the phospholipid and sialic acid remains with the pellet after centrifugation. Electron microscopy reveals that alkaline treatment does not cause gross morphological damage to the vesicles, although freeze-fracture demonstrates some aggregation of intramembrane particles. The data indicate that high pH probably removes peripheral proteins and leaves the integral proteins in place. We find complete recovery of Na+-Ca2+ exchange activity in alkaline-extracted membranes after solubilization and reconstitution. These vesicles contain only 50% of the protein of vesicles reconstituted from control sarcolemma. Thus, the specific activity of Na+-Ca2+ exchange is doubled. Alkaline extraction is a useful and reproducible procedure for enrichment of the Na+-Ca2+ exchange protein. (Na+ + K+)-ATPase is completely inactivated by exposure to pH 12 medium though immunodetection shows that the (Na+ + K+)-ATPase proteins are not extracted. We detect both alpha and alpha + forms of (Na+ + K+)-ATPase and deduce that the Na+ pump proteins do not comprise a major fraction of sarcolemmal protein.  相似文献   

17.
18.
Whereas inhibition of the Na(+)/H(+) exchanger (NHE) has been demonstrated to reduce myocardial infarct size in response to ischemia-reperfusion injury, the ability of NHE inhibition to preserve endothelial cell function has not been examined. This study examined whether NHE inhibition could preserve endothelial cell function after 90 min of regional ischemia and 180 min of reperfusion and compared this inhibition with ischemic preconditioning (IPC). In a canine model either IPC, produced by one 5-min coronary artery occlusion (1 x 5'), or the specific NHE-1 inhibitor eniporide (EMD-96785, 3.0 mg/kg) was administered 15 min before a 90-min coronary artery occlusion followed by 3 h of reperfusion. Infarct size (IS) was determined by 2,3,5-triphenyl tetrazolium chloride staining and expressed as a percentage of the area-at-risk (IS/AAR). Endothelial cell function was assessed by measurement of coronary blood flow in response to intracoronary acetylcholine infusion at the end of reperfusion. Whereas neither control nor IPC-treated animals exhibited a significant reduction in IS/AAR or preservation of endothelial cell function, animals treated with the NHE inhibitor eniporide showed a marked reduction in IS/AAR and a significantly preserved endothelial cell function (P < 0.05). Thus NHE-1 inhibition is more efficacious than IPC at reducing IS/AAR and at preserving endothelial cell function in dogs.  相似文献   

19.
Numerous studies have examined the effect of Na(+)/H(+) exchanger (NHE) inhibition on the myocardium; however, the effect of NHE-1 inhibition on neutrophil function has not been adequately examined. An in vivo canine model of myocardial ischemia-reperfusion injury in which 60 min of left anterior descending coronary artery occlusion followed by 3 h of reperfusion was used to examine the effect of NHE-1 inhibition on infarct size (IS) and neutrophil function. BIIB-513, a selective inhibitor of NHE-1, was infused before ischemia. IS was expressed as a percentage of area at risk (IS/AAR). NHE-1 inhibition significantly reduced IS/AAR and reduced neutrophil accumulation in the ischemic myocardium. NHE-1 inhibition attenuated both phorbol 12-myristate 13-acetate- and platelet-activating factor-induced neutrophil respiratory burst but not CD18 upregulation. Furthermore, NHE-1 inhibition directly protected cardiomyocytes against metabolic inhibition-induced lactate dehydrogenase release and hypercontracture. This study provides evidence that the cardioprotection induced by NHE-1 inhibition is likely due to specific protection of cardiomyocytes and attenuation of neutrophil activity.  相似文献   

20.
Na-Ca exchange activity in bovine cardiac sarcolemmal vesicles was stimulated up to 10-fold by preincubating the vesicles with 1 microM FeSO4 plus 1 mM dithiothreitol (DTT) in a NaCl medium. The increase in activity was not reversed upon removing the Fe and DTT. Stimulation of exchange activity under these conditions was completely blocked by 0.1 mM EDTA or o-phenanthroline; this suggests that the production of reduced oxygen species (H2O2, O2-.,.OH) during Fecatalyzed DTT oxidation might be involved in stimulating exchange activity. In agreement with this hypothesis, the increase in exchange activity in the presence of Fe-DTT was inhibited 80% by anaerobiosis and 60% by catalase. H2O2 (0.1 mM) potentiated the stimulation of Na-Ca exchange by Fe-DTT under both aerobic and anaerobic conditions; H2O2 also produced an increase in activity in the presence of either FeSO4 (1 microM) or DTT (1 mM), but it had no effect on activity by itself. Superoxide dismutase did not block the effects of Fe-DTT on exchange activity; however, the generation of O2-. by xanthine oxidase in the presence of an oxidizable substrate stimulated activity more than 2-fold. Hydroxyl radical scavenging agents (mannitol, sodium formate, sodium benzoate) did not attenuate the stimulation of activity observed with Fe-H2O2. Exchange activity was also stimulated by the simultaneous presence of glutathione (GSH; 1-2 mM) and glutathione disulfide (GSSG; 1-2 mM). Neither GSH nor GSSG was effective by itself and either 0.1 mM EDTA or o-phenanthroline blocked the effects on transport activity of the combination of GSH + GSSG. Treatment of the GSH and GSSG solutions with Chelex ion-exchange resin to remove contaminating transition metal ions reduced (by 40%) the degree of stimulation observed with GSH + GSSG. Full stimulating activity was restored to the Chelex-treated GSH and GSSG solutions by the addition of 1 microM Fe2+; Cu2+ was less effective than Fe2+ whereas Co2+ and Mn2+ were without effect. In the presence of 1 microM Fe2+, GSH alone produced a slight increase in transport activity, but this was markedly enhanced by the addition of Chelex-treated GSSG. The results indicate that stimulation of exchange activity requires the presence of both a reducing agent (DTT, GSH, O-.2, or Fe2+) and an oxidizing agent (H2O2, GSSG, and perhaps O2) and that the effects of these agents are mediated by metal ions (e.g. Fe2+).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号