首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work has shown that orthostatic hypotension associated with cardiovascular deconditioning results from inadequate peripheral vasoconstriction. We used the hindlimb-unloaded (HU) rat in this study as a model to induce cardiovascular deconditioning. The purpose of this study was to test the hypothesis that 14 days of HU diminishes vasoconstrictor responsiveness of mesenteric resistance arteries. Mesenteric resistance arteries from control (n = 43) and HU (n = 44) rats were isolated, cannulated, and pressurized to 108 cm H(2)O for in vitro experimentation. Myogenic (intralumenal pressure ranging from 30 to 180 cm H(2)O), KCl (2-100 mM), norepinephrine (NE, 10(-9)-10(-4) M) and caffeine (1-20 mM) induced vasoconstriction, as well as the temporal dynamics of vasoconstriction to NE, were determined. The active myogenic and passive pressure responses were unaltered by HU when pressures remained within physiological range. However, vasoconstrictor responses to KCl, NE, and caffeine were diminished by HU, as well as the rate of constriction to NE (C, 14.8 +/- 3.6 microm/s vs. HU 7.6 +/- 1.8 microm/s). Expression of sarcoplasmic reticulum Ca(2+)ATPase 2 and ryanodine 3 receptor mRNA was unaffected by HU, while ryanodine 2 receptor mRNA and protein expression were diminished in mesenteric arteries from HU rats. These data suggest that HU-induced and microgravity-associated orthostatic intolerance may be due, in part, to an attenuated vasoconstrictor responsiveness of mesenteric resistance arteries resulting from a diminished ryanodine 2 receptor Ca(2+) release mechanism.  相似文献   

2.
Previous work suggests that superoxide mediates hypoxia/reoxygenation (H/R)-induced constriction of isolated mouse coronary arteries (CA). To determine the source of superoxide overproduction during H/R we studied CA obtained from transgenic (Tg) mice overexpressing human CuZn-superoxide dismutase (SOD) and mice lacking gp91(phox) using an in vitro vascular ring bioassay. We found that under normoxic conditions CA isolated from wild type (wt) mice, CuZn-SOD Tg mice and gp91(phox) knock-out mice had similar contractile responses to U46619 and hypoxia and similar dilation responses to acetylcholine. In wt CA, 30 min of hypoxia (1% O(2)) followed by reoxygenation (16% O(2)) resulted in further coronary vasoconstriction (internal diameter from 105 +/- 11 to 84.5 +/- 17.9 microm), whereas this response was completely blocked in both CuZn-SOD Tg and gp91(phox) knock-out CA (104.3 +/- 10.5 to 120.7 +/- 14 microm and 143.3 +/- 15.3 to 172.7 +/- 12.5 microm, respectively, p < 0.01). Furthermore, we show that H/R enhances the generation of superoxide radicals in wt CA (25.8 +/- 0.7 relative light units per second (RLU/s)), whereas CuZn-SOD Tg CA (12.2 +/- 0.8 RLU/s, p < 0.01) and gp91(phox) CA (12.5 +/- 0.9 RLU/s, p < 0.01) show reduced levels. These results demonstrate that H/R-induced vasoconstriction is mediated by intracellular superoxide overproduction via endothelial NADPH oxidase gp91(phox). Therefore, increasing endogenous levels of CuZn-SOD in CA may provide a novel cardioprotective strategy for maintaining coronary perfusion under conditions of H/R.  相似文献   

3.
In the chicken embryo, acute hypoxemia results in cardiovascular responses, including an increased peripheral resistance. We investigated whether local direct effects of decreased oxygen tension might participate in the arterial response to hypoxemia in the chicken embryo. Femoral arteries of chicken embryos were isolated at 0.9 of incubation time, and the effects of acute hypoxia on contraction and relaxation were determined in vitro. While hypoxia reduced contraction induced by high K(+) to a small extent (-21.8 +/- 5.7%), contractile responses to exogenous norepinephrine (NE) were markedly reduced (-51.1 +/- 3.2%) in 80% of the arterial segments. This effect of hypoxia was not altered by removal of the endothelium, inhibition of NO synthase or cyclooxygenase, or by depolarization plus Ca(2+) channel blockade. When arteries were simultaneously exposed to NE and ACh, hypoxia resulted in contraction (+49.8 +/- 9.3%). Also, relaxing responses to ACh were abolished during acute hypoxia, while the vessels became more sensitive to the relaxing effect of the NO donor sodium nitroprusside (pD(2): 5.81 +/- 0.21 vs. 5.31 +/- 0.27). Thus, in chicken embryo femoral arteries, acute hypoxia blunts agonist-induced contraction of the smooth muscle and inhibits stimulated endothelium-derived relaxation factor release. The consequences of this for in vivo fetal hemodynamics during acute hypoxemia depend on the balance between vasomotor influences of circulating catecholamines and those of the endothelium.  相似文献   

4.
The aim of the present study was to determine the role of endothelium and superoxide in the responses of isolated mouse coronary arteries to hypoxia-reoxygenation. Isolated mouse coronary artery was cannulated, pressurized at 60 mmHg, and constantly superfused with recirculating Krebs-Ringer bicarbonate solution for continuous measurement of intraluminal diameter (ID) by video microscopy. Under a no-flow condition, hypoxia (0% O(2), 30 min) caused vasoconstriction. Reoxygenation caused a further vasoconstriction (ID change from 111.4 +/- 11.1 to 91 +/- 16.5 microm) that was significantly reduced by removal of endothelium (ID change from 105.4 +/- 27 to 109.9 +/- 23.4 microm). Cu/Zn superoxide dismutase (150 U/ml) did not alter the hypoxic vasoconstriction but abolished the reoxygenation-caused endothelium-dependent vasoconstriction. Hypoxia-reoxygenation markedly enhanced the generation of superoxide that was significantly reduced by either removing the endothelium or treated these endothelium-intact vessels with superoxide dismutase. These results suggest that, in isolated mouse coronary arteries, hypoxia causes vasoconstriction that is independent of endothelium, whereas reoxygenation causes vasoconstriction that is mediated by enhanced generation of superoxide from endothelium.  相似文献   

5.
The hypothesis on Fetal and Infant Origins of Adult Disease proposes that an altered in utero environment may impair fetal development and physiological function, increasing susceptibility to disease in adulthood. Previous studies demonstrated that reduced fetal growth predisposes to adult cardiovascular diseases. Maternal smoking and high altitude are also linked to reduced fetal growth and adult disease, and both cause fetal hypoxia. We therefore wanted to determine whether fetal hypoxia produces alterations in the adult pulmonary vasculature. Body and ventricular weight, pulmonary arterial compliance and vasoreactivity to potassium chloride (KCl), prostaglandin F2alpha (PGF2alpha), acetylcholine (ACh) and sodium nitroprusside (SNP) were studied in adult rats exposed to 10 % hypoxia throughout the perinatal period, compared to age-matched controls. Rats exposed to perinatal hypoxia had reduced body weight (199+/-15 vs. 294+/-10 g, P<0.001), elevated right ventricular weight (70.3+/-8.8 vs. 51.4+/-1.2 mg/100 g, P<0.05), elevated left ventricular weight (281+/-27 vs. 232+/-5 mg/100 g, P<0.05), reduced pulmonary arterial compliance (35.2+/-2.0 vs. 46.4+/-2.4 microm/mN, P<0.05) and reduced maximal pulmonary vasoconstriction to KCl (1.74+/-0.14 vs. 2.63+/-0.31 mN/mm, P<0.01), and PGF2(2alpha) (1.40+/-0.14 vs. 2.47+/-0.44 mN/mm, P<0.05). Perinatal exposure to hypoxia had a profound effect upon the adult pulmonary circulation, which could predispose to cardiopulmonary diseases in adulthood.  相似文献   

6.
This study investigated the role of changes in the expression of the cytochrome P-450 4A (CYP450-4A) enzymes that produce 20-hydroxyeicosatetraenoic acid (20-HETE) in modulating the responses of rat mesenteric resistance arteries to norepinephrine (NE) and reduced Po(2) after short-term (3-day) changes in dietary salt intake. The CYP450-4A2, -4A3, and -4A8 isoforms were all detected by RT-PCR in arteries obtained from rats fed a high-salt (HS, 4% NaCl) diet, whereas only the CYP450-4A3 isoform was detected in vessels from rats fed a low-salt (LS, 0.4% NaCl) diet. Expression of the 51-kDa CYP450-4A protein was significantly increased by a HS diet. Inhibiting 20-HETE synthesis with 30 muM N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) reduced the vasoconstrictor response to NE in arteries obtained from rats fed either a LS or HS diet, but NE sensitivity after DDMS treatment was significantly lower in vessels from rats on a HS diet. DDMS treatment also restored the vasodilator response to reduced Po(2) that was impaired in arteries from rats on a HS diet. These findings suggest that 1) a HS diet increases the expression of CYP450-4A enzymes in the mesenteric vasculature, 2) 20-HETE contributes to the vasoconstrictor response to NE in mesenteric resistance arteries, 3) the contribution of 20-HETE to the vasoconstrictor response to NE is greater in rats fed a HS diet than in rats fed a LS diet, and 4) upregulation of the production of 20-HETE contributes to the impaired dilation of mesenteric resistance arteries in response to hypoxia in rats fed a HS diet.  相似文献   

7.
To determine whether endothelial function is altered by chronic surgical sympathectomy, we infused ACh, isoproterenol, nitroprusside (NTP), and the nitric oxide synthase inhibitor NG-mono-methyl-L-arginine (L-NMMA) into the brachial arteries of nine patients 5-64 mo after thoracic sympathectomy for hyperhidrosis. Age- and gender-matched controls were also studied. Forearm blood flow (FBF) was measured by venous occlusion plethysmography. Lower body negative pressure was used to assess reflex vasoconstrictor responses. Tyramine, which acts locally and causes norepinephrine release from sympathetic nerves, was also administered via the brachial artery. FBF at rest was 2.5 +/- 0.4 ml x dl-1 x min-1 in the patients and 2.5 +/- 0.3 ml x dl-1 x min-1 in the controls (P = 0.95). The normal vasoconstrictor responses to lower body negative pressure were abolished in the patients. By contrast, tyramine produced dose-dependent vasoconstriction in the patients that was identical to that of controls. The dose-response curves to ACh were similar in patients and controls, with maximum values of 19.3 +/- 4.4 vs. 25.5 +/- 2.8 ml x dl-1 x min-1, respectively. L-NMMA reduced baseline FBF similarly and reduced the maximal FBF response to ACh in both groups (patients 8.9 +/- 3.5 vs. controls 9.7 +/- 2.5 ml x dl-1 x min-1). The vasodilation to isoproterenol was similar and blunted to the same extent in both groups by L-NMMA. The responses to NTP in patients and controls were similar and not affected by L-NMMA. We conclude that, in humans, chronic surgical sympathectomy does not cause major disruptions in vascular function in the forearm. The normal vasoconstrictor responses to tyramine indicate that there were viable sympathetic nerves in the forearm that were not engaged by LBNP.  相似文献   

8.
Interest surrounds the role of an NADPH oxidase-like enzyme in hypoxic pulmonary vasoconstriction (HPV). We have studied the effects of the NADPH oxidase inhibitors iodonium diphenyl (ID) and cadmium sulphate (CdSO4) upon HPV of isolated rat pulmonary arteries (n = 73, internal diameter 545 +/- 23 microm). Vessels were preconstricted with prostaglandin F2alpha (PGF2alpha, 0.5 or 5 microM) prior to a hypoxic challenge. ID (10 or 50 microM), CdSO4 (100 microM) or vehicle (50 microl) was added for 30 min before re-exposure to PGF2alpha and hypoxia. ID and CdSO4 significantly inhibited HPV. In vessels preconstricted with 5 microM PGF2alpha, ID (10 and 50 microM) reduced HPV from 37.4 +/- 5.6 % to 9.67 +/- 4.4 % of the contractile response elicited by 80 mM KCl (P<0.05) and from 30.1 +/- 5.0 % to 0.63 +/- 0.6% 80 mM KCl response (P<0.01), respectively. CdSO4 (100 microM) reduced HPV from 29.4 +/-4.0 % to 17.1 +/- 2.2% 80 mM KCl response (P<0.05). In vessels preconstricted with 0.5 microM PGF2alpha, ID (10 and 50 microM) reduced HPV from 16.0 +/- 3.15% to 3.36 +/- 1.44 % 80 mM KCl response (P<0.01) and from 15.0 +/- 1.67 % to 2.82 +/- 1.40 % 80 mM KCl response (P<0.001), respectively. Constriction to PGF2alpha was potentiated by ID. ID and CdSO4, at concentrations previously shown to inhibit neutrophil NADPH oxidase, attenuate HPV in isolated rat pulmonary arteries. This suggests that an NADPH oxidase-like enzyme is involved in HPV and could act as the pulmonary oxygen sensor.  相似文献   

9.
Awe SO  Adeagbo AS 《Life sciences》2002,71(11):1255-1266
tert-Butyl hydroperoxide (t-BOOH), an inducer of oxidative stress in vitro, elicits constrictor responses of the isolated, rat kidney and mesenteric arteries perfused (5 ml/min) with physiological salt solutions (PSS) at 37 degrees C gassed with carbogen. We hypothesized that generation of superoxide anions (O(2)(-)) accounts for these responses. We assessed responses to t-BOOH in preparations with/without endothelium, and in the absence/presence of antioxidant compounds, catalase and tempol, scavengers of hydroxyl (OH(-)) radical and O(2)(-), respectively. t-BOOH (0.01-50 micromol) induced (expressed as % of 50 micromol KCl vasoconstriction) were abolished by endothelium denudation, perfusion with Ca(2+)-free PSS and by nifedipine, (1 nM). Infusion of t-BOOH (0.1 microM) did not significantly (P > 0.05) affect phenylepherine E(max) in the mesenteric arteries, however it reduced phenylepherine E(max) responses in the kidney from 94.9 +/- 3.9 % to 64.7 +/- 4.7 %. Nitroblue tetrazolium, as well as alpha-phenyl N-tert-butyl nitrone, at 100 microM, but not catalase (500 IU) significantly attenuated t-BOOH (10 micromol) vasoconstrictor responses. Tempol (100 microM), a membrane permeable antioxidant, also significantly reduced t-BOOH (10 micromol) responses from 17.0 +/- 1.9 % (control) to 9.6 +/- 0.5 % (+tempol) in the mesenteric arteries and from 40.4 +/- 4.2 % (control) to 20.7 +/- 1.5 % (+tempol) in the kidney. Our data suggest that t-BOOH elicits vasoconstriction via two distinct mechanisms: (i) increased influx of extracellular Ca(2+), and (ii) generation of free radicals including O(2)(-) anions.  相似文献   

10.
自发性高血压大鼠血管α1肾上腺素受体亚型的改变   总被引:1,自引:0,他引:1  
韩启德  李金玲 《生理学报》1992,44(3):229-236
本工作在离体与整体条件下比较易卒中型自发性高血压(SHRSP)大鼠与WKY大鼠血管中α_1受体的两种亚型。在离体灌流的主动脉、肾动脉与肠系膜动脉,50μmol/L氯甲基可乐定(CEC)预温育30min可使α_1受体激动时引起的最大收缩张力在SHRSP与WKY大鼠分别降为对照时的31.4±8.3%与35.2±2.9%,68.4±8.2%与80.1±7.3%,68.4±6.3%与55.4±7.0%,两者间均无显著性差别。但10μmol/L硝苯吡啶对α_1受体收缩效应的阻断作用则在SHRSP大鼠大大超过WKY大鼠,最大收缩张力分别降为对照时的3.1±1.5%与56.5±4.8%(P<0.01),9.0±4.1%与23.6±3.5%(P<0.05),5.9±2.5%与28.0±0.8%(P<0.01)。整体动物实验也显示硝苯吡啶的降血压作用及对苯肾上腺素升血压效应的阻断作用在SHRSP大鼠都较WKY大鼠显著增强。离体主动脉a_1受体激动时的快速相与持续相收缩均主要由α_(1B)亚型激动引起,硝苯吡啶对快速相收缩的阻断作用在SHRSP与WKY大鼠无显著性差别,但对持续相收缩的阻断作用则在SHRSP大鼠显著强于WKY大鼠。上述结果提示SHRSP大鼠血管α_1受体两种亚型的分布没有显著改变,但α_(1B)受体激动时继发性细胞外Ca~(2+)进入的途径由非双氢吡啶敏感性钙通道转变为双氢吡啶敏感性钙通道。  相似文献   

11.
The peptide human urotensin-II (hUT-II) and its receptor have recently been cloned. The vascular function of this peptide in humans, however, has yet to be determined. Vasoconstrictor and vasodilator responses to hUT-II were investigated in human small muscular pulmonary arteries [approximately 70 microm internal diameter (ID)] and human abdominal resistance arteries (approximately 200 microm ID). Vasodilator responses were investigated in endothelin-1 (3 nM) precontracted vessels and, in the small pulmonary vessels, compared with the known vasodilators adrenomedullin, sodium nitroprusside, and acetylcholine. In human small pulmonary arteries, hUT-II did not induce vasoconstriction but was a potent vasodilator [-log M concentration causing 50% of the maximum vasodilator effect (pIC(50)) 10.4 +/- 0.5; percentage of reduction in tone (E(max)) 81 +/- 8% (vs. 23 +/- 11% in time controls), n = 5]. The order of potency for vasodilation was human urotensin-II = adrenomedullin (pIC(50) 10.1 +/- 0.4, n = 6) > sodium nitroprusside (pIC(50) 7.4 +/- 0.2, n = 6) = acetylcholine (pIC(50) 6.8 +/- 0.3, n = 6). In human abdominal arteries, hUT-II did not induce vasoconstriction but was a potent vasodilator [pIC(50) 10.3 +/- 0.7; E(max) 96 +/- 8% (vs. 43 +/- 16% in time controls), n = 4]. This is the first report that hUT-II is a potent vasodilator but not a vasoconstrictor of human small pulmonary arteries and systemic resistance arteries.  相似文献   

12.
The aim of this study was to evaluate the role of voltage-operated Ca(2+) channels in the initiation and conduction of vasoconstrictor responses to local micropipette electrical stimulation of rat mesenteric arterioles (28 +/- 1 microm, n = 79) in vivo. Local and conducted (600 microm upstream from the pipette) vasoconstriction was not blocked by TTX (1 micromol/l, n = 5), nifedipine, or nimodipine (10 micromol/l, n = 9). Increasing the K(+) concentration of the superfusate to 75 mmol/l did not evoke vasoconstriction, but this depolarizing stimulus reversibly abolished vasoconstrictor responses to current stimulation (n = 7). Addition of the T-type Ca(2+) antagonist mibefradil (10 micromol/l, n = 6) to the superfusate reversibly blocked local and conducted vasoconstriction to current stimulation. With the use of RT-PCR techniques, it was demonstrated that rat mesenteric arterioles <40 microm do not express mRNA for L-type Ca(2+) channels (alpha(1C)-subunit), whereas mRNA coding for T-type subunits was found (alpha(1G)- and alpha(1H)-subunits). The data indicate that L-type Ca(2+) channels are absent from rat mesenteric arterioles (<40 microm). Rather, the vasoconstrictor responses appear to rely on other types of voltage-gated, dihydropyridine-insensitive Ca(2+) channels, possibly of the T-type.  相似文献   

13.
Lacza Z  W Busija D 《Life sciences》2006,78(23):2763-2766
Urotensin-II (UT-II) is a small circular peptide and is described as the most potent endogenous vasoconstrictor in various vascular beds. However, the in vivo effects of UT-II can be either vasoconstriction or vasodilation depending on the species and the tissue investigated. The present study sought to characterize the vasoactive effect of UT-II in the piglet cerebral circulation in vivo. Pial arteries of 99 +/- 6 microm were visualized with intravital microscopy through a closed cranial window in anesthetized newborn piglets. Topical application of UT-II elicited a weak dose-dependent vasodilation of the arteries (0.001 microM: 3 +/- 3 microm, 0.1 microM: 10 +/- 5 microm, 10 microM: 14 +/- 7 microm). Smaller arteries with an initial diameter below 100 microm showed minimal or no vasodilation, while larger arteries between 100 and 120 microm had a pronounced dose-dependent effect. Systemic application of 15 mg/kg Nomega-nitro-L-arginine-methyl ester (L-NAME) completely inhibited the vasodilation. We conclude that UT-II, in contrast to most other vascular beds, is a weak NO-dependent vasodilator in the piglet pial vasculature.  相似文献   

14.
An increase in fetoplacental vascular resistance caused by hypoxia is considered one of the key factors of placental hypoperfusion and fetal undernutrition leading to intrauterine growth restriction (IUGR), one of the serious problems in current neonatology. However, although acute hypoxia has been shown to cause fetoplacental vasoconstriction, the effects of more sustained hypoxic exposure are unknown. This study was designed to test the hypothesis that chronic hypoxia elicits elevations in fetoplacental resistance, that this effect is not completely reversible by acute reoxygenation, and that it is accompanied by increased acute vasoconstrictor reactivity of the fetoplacental vasculature. We measured fetoplacental vascular resistance as well as acute vasoconstrictor reactivity in isolated perfused placentae from rats exposed to hypoxia (10% O(2)) during the last week of a 3-wk pregnancy. We found that chronic hypoxia shifted the relationship between perfusion pressure and flow rate toward higher pressure values (by approximately 20%). This increased vascular resistance was refractory to a high dose of sodium nitroprusside, implying the involvement of other factors than increased vascular tone. Chronic hypoxia also increased vasoconstrictor responses to angiotensin II (by approximately 75%) and to acute hypoxic challenges (by >150%). We conclude that chronic prenatal hypoxia causes a sustained elevation of fetoplacental vascular resistance and vasoconstrictor reactivity that are likely to produce placental hypoperfusion and fetal undernutrition in vivo.  相似文献   

15.
Vascular dysfunction characterized by a hyperreactivity to vasoconstrictors and/or impaired vascular relaxation contributes to increased incidence of cardiovascular disease in diabetes. Endothelin (ET)-1, a potent vasoconstrictor, is chronically elevated in diabetes. However, the role of ET-1 in resistance versus larger vessel function in mild diabetes remains unknown. Accordingly, this study investigated vascular function of third-order mesenteric arteries and basilar arteries in control Wistar and Goto-Kakizaki (GK) rats, a model of mild Type 2 diabetes. Six weeks after the onset of diabetes, contractile responses to 0.1-100 nM ET-1 and relaxation responses to 1 nM-10 microM acetylcholine (ACh) in vessels preconstricted (baseline + 60%) with serotonin (5-HT) were assessed by myograph studies in the presence or absence of a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (L-NNA). Maximum contractile response to ET-1 was augmented in mesenteric vessels (155 +/- 18% in GK vs. 81 +/- 6% in control; n = 5-7) but not in the basilar artery (134 +/- 29% in GK vs. 107 +/- 17% in control; n = 4 per group). However, vascular relaxation was impaired in the basilar arteries (22 +/- 4% in GK vs. 53 +/- 7% in control; n = 4 per group) but not in mesenteric arteries of GK rats. Inhibition of NOS decreased the relaxation response of basilar arteries to 15 +/- 8% and 42 +/- 5% in GK and control rats, respectively; whereas, in resistance vessels, corresponding values were 56 +/- 7% and 89 +/- 3% (vs. 109 +/- 2% and 112 +/- 3% without NOS blockade), indicating the involvement of different vasorelaxation-promoting pathways in these vascular beds. These findings provide evidence that the ET system is activated even under mild hyperglycemia and that it contributes to the hyperreactivity of resistance vessels, therefore, the ET system may play an important role in elevated blood pressure in Type 2 diabetes.  相似文献   

16.
Excessive exposure of the fetus to maternally derived corticosteroids has been linked to the development of adult-onset diseases. To determine if early gestation corticosteroid exposure alters subsequent coronary artery reactivity, we administered dexamethasone (0.28 mg.kg(-1).day(-1)) to pregnant ewes at 27-28 days gestation (term being 145 days). Vascular responsiveness was assessed in endothelium-intact coronary and mesenteric arteries isolated from steroid-exposed and age-matched control fetal sheep at 123-126 days gestation and lambs at 4 mo of age. Lambs exposed to maternal dexamethasone had higher mean arterial blood pressures than the age-matched controls (93 +/- 3 vs. 83 +/- 5 mmHg, P < 0.05). Mesenteric arteries from the steroid-exposed fetuses displayed diminished responses to ANG II, relative to controls. In 4-mo-old lambs, prenatal dexamethasone exposure significantly increased coronary artery vasoconstriction to ANG II, ACh, and U-46619, but not KCl. In contrast, postnatal mesenteric artery reactivity was unaltered by steroid exposure. Compared with fetal mesenteric reactivity, postnatal mesenteric reactivity to ANG II, phenylephrine, and U-46619 was diminished, whereas the response to 120 mmol/l KCl was heightened. Coronary artery ANG II receptor protein expression was not significantly altered by steroid exposure in either age group. These findings demonstrate that early-gestation glucocorticoid exposure programs postnatal elevations in blood pressure and selectively enhances coronary artery responsiveness to second messenger-dependent vasoconstrictors. Glucocorticoid-induced alterations in coronary vascular smooth muscle structure or function may provide a mechanistic link between an adverse intrauterine environment and later cardiovascular disease.  相似文献   

17.
Acute and chronic hypoxic pulmonary hypertension in guinea pigs   总被引:1,自引:0,他引:1  
To determine whether the strength of acute hypoxic vasoconstriction predicts the magnitude of chronic hypoxic pulmonary hypertension, we performed serial studies on guinea pigs. Unanesthetized, chronically catheterized guinea pigs increased mean pulmonary arterial pressure (PAP) from 11 +/- 0.5 to 13 +/- 0.7 Torr in acute hypoxia (10% O2 for 65 min). The response was maximal at 5 min, remained stable for 1 h, and was reversible on return to room air. Cardiac index did not change with acute hypoxia or recovery. Guinea pigs exposed to chronic hypoxia increased PAP, measured in room air 1 h after removal from the hypoxic chamber, to 18 +/- 1 Torr by 5 days with little further increase in PAP to 20 +/- 1 Torr after 21 days. Cardiac index fell from 273 +/- 12 to 206 +/- 7 ml.kg-1.min-1 (P less than 0.05) after 21 days of hypoxia. Medial thickness of pulmonary arteries adjacent to terminal bronchioles and alveolar ducts increased significantly by 10 days. The magnitude of the pulmonary vasoconstriction to acute hypoxia persisted and was unabated during the development and apparent stabilization of chronic hypoxic pulmonary hypertension, suggesting that if vasoconstriction is the stimulus for remodeling, then the importance of the stimulus lessens with duration of hypoxia. In individual animals followed serially, we found no correlation between the magnitude of the acute vasoconstrictor response before chronic hypoxia and the severity of chronic pulmonary hypertension that subsequently developed either because the initial response was small and variable or because vasoconstriction may not be the sole stimulus for vascular remodeling in the guinea pig.  相似文献   

18.
Although chronic prenatal hypoxia is considered a major cause of persistent pulmonary hypertension of the newborn, experimental studies have failed to consistently find pulmonary hypertensive changes after chronic intrauterine hypoxia. We hypothesized that chronic prenatal hypoxia induces changes in the pulmonary vasculature of the chicken embryo. We analyzed pulmonary arterial reactivity and structure and heart morphology of chicken embryos maintained from days 6 to 19 of the 21-day incubation period under normoxic (21% O(2)) or hypoxic (15% O(2)) conditions. Hypoxia increased mortality (0.46 vs. 0.14; P < 0.01) and reduced the body mass of the surviving 19-day embryos (22.4 +/- 0.5 vs. 26.6 +/- 0.7 g; P < 0.01). A decrease in the response of the pulmonary artery to KCl was observed in the 19-day hypoxic embryos. The contractile responses to endothelin-1, the thromboxane A(2) mimetic U-46619, norepinephrine, and electrical-field stimulation were also reduced in a proportion similar to that observed for KCl-induced contractions. In contrast, no hypoxia-induced decrease of response to vasoconstrictors was observed in externally pipped 21-day embryos (incubated under normoxia for the last 2 days). Relaxations induced by ACh, sodium nitroprusside, or forskolin were unaffected by chronic hypoxia in the pulmonary artery, but femoral artery segments of 19-day hypoxic embryos were significantly less sensitive to ACh than arteries of control embryos [pD(2) (= -log EC(50)): 6.51 +/- 0.1 vs. 7.05 +/- 0.1, P < 0.01]. Pulmonary vessel density, percent wall area, and periarterial sympathetic nerve density were not different between control and hypoxic embryos. In contrast, hypoxic hearts showed an increase in right and left ventricular wall area and thickness. We conclude that, in the chicken embryo, chronic moderate hypoxia during incubation transiently reduced pulmonary arterial contractile reactivity, impaired endothelium-dependent relaxation of femoral but not pulmonary arteries, and induced biventricular cardiac hypertrophy.  相似文献   

19.
Although arterial dilator reactivity is severely impaired during exposure of animals to chronic intermittent hypoxia (CIH), few studies have characterized vasoconstrictor responsiveness in resistance arteries of this model of sleep-disordered breathing. Sprague-Dawley rats were exposed to CIH (10% inspired O2 fraction for 1 min at 4-min intervals; 12 h/day) for 14 days. Control rats were housed under normoxic conditions. Diameters of isolated gracilis muscle resistance arteries (GA; 120-150 microm) were measured by television microscopy before and during exposure to norepinephrine (NE) and angiotensin II (ANG II) and at various intraluminal pressures between 20 and 140 mmHg in normal and Ca2+-free physiological salt solution. There was no difference in the ability of GA to constrict in response to ANG II (P = 0.42; not significant; 10(-10)-10(-7) M). However, resting tone, myogenic activation, and vasoconstrictor responses to NE (P < 0.001; 10(-9)-10(-6) M) were reduced in CIH vs. controls. Treatment of rats with the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol; 1 mM) in the drinking water restored myogenic responses and NE-induced constrictions of CIH rats, suggesting that elevated superoxide production during exposure to CIH attenuates vasoconstrictor responsiveness to NE and myogenic activation in skeletal muscle resistance arteries. CIH also leads to an increased stiffness and reduced vessel wall distensibility that were not correctable with oral tempol treatment.  相似文献   

20.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号