首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermody-namic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a single-chain hybrid of insulin and IGF-1, [B10Glu]lns/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides iso-mer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.  相似文献   

2.
Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermodynamic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a singlechain hybrid of insulin and IGF-1, [B10Glu]Ins/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides isomer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.  相似文献   

3.
Chen Y  You Y  Jin R  Guo ZY  Feng YM 《Biochemistry》2004,43(28):9225-9233
Although insulin and insulin-like growth factor-1 (IGF-1) belong to one family, insulin folds into one thermodynamically stable structure, while IGF-1-folds into two thermodynamically stable structures (native and swap forms). We have demonstrated previously that the bifurcating folding behavior of IGF-1 is mainly controlled by its B-domain. To further elucidate which parts of the sequences determine their different folding behavior, by exchanging the N-terminal sequences of mini-IGF-1 and recombinant porcine insulin precursor (PIP), we prepared four peptide models: [1-9]PIP, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1 by means of protein engineering, and their disulfide rearrangement, V8 digestion, circular dichroic spectra, disulfide stability, and in vitro refolding were investigated. Among them only [1-9]PIP, like mini-IGF-1/IGF-1, was expressed in yeast as two isomers: isomer 1 (corresponding to swap IGF-1) and isomer 2 (corresponding to native IGF-1), which are supported by the experimental results of disulfide rearrangements, peptide mapping of V8 endoprotenase digests, circular dichroic analysis, in vitro refolding, and disulfide stability analysis. The other peptide models, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1, fold into one stable structure as PIP does, which indicates that sequence 1-4 of mini-IGF-1 is important for the folding behavior of mini-IGF-1/IGF-1 but not sufficient to lead to a bifurcating folding. The results demonstrated that the folding information, by which mini-IGF-1/IGF-1-folds into two thermodynamically structures, is encoded/written in its sequence 1-9, while sequences 1-10 of B chain in insulin/PIP play an important role in the guide of its unique disulfide pairing during the folding process.  相似文献   

4.
Obesity and type 2 diabetes are associated with an increased risk for development of certain forms of cancer, including colon cancer. The publication of highly controversial epidemiological studies in 2009 raised the possibility that use of the insulin analog glargine increases this risk further. However, it is not clear how mitogenic effects of insulin and insulin analogs measured in vitro correlate with tumor growth-promoting effects in vivo. The aim of this study was to examine possible growth-promoting effects of native human insulin, insulin X10 and IGF-1, which are considered positive controls in vitro, in a short-term animal model of an obesity- and diabetes-relevant cancer. We characterized insulin and IGF-1 receptor expression and the response to treatment with insulin, X10 and IGF-1 in the murine colon cancer cell line (MC38 cells) in vitro and in vivo. Furthermore, we examined pharmacokinetics and pharmacodynamics and monitored growth of MC38 cell allografts in mice with diet-induced obesity treated with human insulin, X10 and IGF-1. Treatment with X10 and IGF-1 significantly increased growth of MC38 cell allografts in mice with diet-induced obesity and we can therefore conclude that supra-pharmacological doses of the insulin analog X10, which is super-mitogenic in vitro and increased the incidence of mammary tumors in female rats in a 12-month toxicity study, also increase growth of tumor allografts in a short-term animal model.  相似文献   

5.
H Chen  Y M Feng 《Biological chemistry》2001,382(7):1057-1062
For further understanding the contribution of the alpha-helix II (alphaII) in the growth-promoting activity of insulin, the residues A2Ile, A5Gln, and A8Thr located in alphaII were mutated to Leu, Glu, and Tyr, respectively. Three mutant insulins, [A2Leu]human insulin, [A5Glu]human insulin, and [A8Tyr]human insulin, were prepared by means of site-directed mutagenesis. The in vitro growth-promoting activities of the three mutant insulins, measured using GR2H6 cells, were 7.5%, 291%, and 250% of that of native insulin, respectively. Their receptor-binding activities to the insulin receptor were 2.3%, 46.7%, and 138.7%, respectively, compared with native insulin. Both the growth-promoting and receptor-binding activities of [A2Leu]human insulin and [A3Leu]insulin (Shi et al., 1997) were parallel and greatly decreased compared with native insulin. The results demonstrate that the residues A2Ile and A3Val in the alphaII are essential for the growth-promoting activity of insulin, and the growth-promoting function of insulin might be performed through, or mainly through, binding to the insulin receptor. The growth-promoting activities of [A5Glu]human insulin and [A8Tyr]human insulin were increased 6-fold and 2-fold, respectively, compared with native insulin, indicating that their growth-promoting activities might be expressed by, or mainly by, binding to the IGF-1 receptor.  相似文献   

6.
The IGF-1R [type 1 IGF (insulin-like growth factor) receptor] is activated upon binding to IGF-I and IGF-II leading to cell growth, survival and migration of both normal and cancerous cells. We have characterized the binding interaction between the IGF-1R and its ligands using two high-affinity mouse anti-IGF-1R mAbs (monoclonal antibodies), 7C2 and 9E11. These mAbs both block IGF-I binding to the IGF-1R but have no effect on IGF-II binding. Epitope mapping using chimaeras of the IGF-1R and insulin receptor revealed that the mAbs bind to the CR (cysteine-rich) domain of IGF-1R. The epitope was finely mapped using single point mutations in the IGF-1R. Mutation of Phe241, Phe251 or Phe266 completely abolished 7C2 and 9E11 binding. The three-dimensional structure showed that these residues cluster on the surface of the CR-domain. BIAcore analyses revealed that IGF-I and a chimaeric IGF-II with the IGF-I C-domain competed for the binding of both mAbs with the IGF-1R, whereas neither IGF-II nor a chimaeric IGF-I with the IGF-II C-domain affected antibody binding. We therefore conclude the IGF-I C-domain interacts with the CR (cysteine-rich) domain of the receptor at the cluster of residues Phe241, Phe251 and Phe266. These results allow precise orientation of IGF-I within the IGF-I-IGF-1R complex involving the IGF-I C-domain binding to the IGF-1R CR domain. In addition, mAbs 7C2 and 9E11 inhibited both IGF-I- and IGF-II-induced cancer cell proliferation, migration and IGF-1R down-regulation, demonstrating that targeting the IGF-1R is an effective strategy for inhibition of cancer cell growth.  相似文献   

7.
Role of PI3-kinase in isoproterenol and IGF-1 induced ecNOS activity   总被引:4,自引:0,他引:4  
Phosphatidylinositol 3-kinase (PI3-K) has been shown to mediate insulin and insulin-like growth factor-1 (IGF-1)-induced nitric oxide (NO) generation and, thus, vascular tone. A role for PI3-K in G-protein-coupled receptor signal transduction has been reported. As beta (beta2)-adrenergic vascular actions are partly dependent on NO, we have investigated the role of PI3-K in isoproterenol (Iso) and IGF-1 induced endothelial NO synthase (ecNOS) activity in rat aortic endothelial cells (RAEC). Cell lysates of RAEC, exposed to Iso (10 micromol/L) for 5 min and 6 h, and to IGF-1 (100 nM) for 10 min and 6 h, or pretreated with PI3-K inhibitor Wortmannin (WT), were used for measuring PI3-K activity, p85kDa regulatory protein, and citrulline production. Results show that Iso and IGF-1 increased a p85 subunit and citrulline production, and also enhanced 32P incorporation into PIP3. Pretreatment with WT inhibited Iso-stimulated ecNOS, as well as, PI3-K activity. Iso enhanced association of ecNOS with the triton X-100-insoluble fraction of RAEC. These data indicate that the endothelial cell PI3-K pathway mediates, in part, the release of NO and subsequent vasorelaxation in response to this beta-agonist, as well as, IGF-1.  相似文献   

8.
Huang QL  Zhao J  Tang YH  Shao SQ  Xu GJ  Feng YM 《Biochemistry》2007,46(1):218-224
Although insulin and insulin-like growth factor-1 (IGF-1) belong to the insulin superfamily and share highly homologous sequences, similar tertiary structure, and a common ancestor molecule, amphioxus insulin-like peptide, they have different folding behaviors: IGF-1 folds into two thermodynamically stable tertiary structures (native and swap forms), while insulin folds into one unique stable structure. To further understand which part of the sequence determines their different folding behavior, based on previous reports from the laboratory, two peptide models, [B9A][1-4]porcine insulin precursor (PIP) and [B10E][1-4]PIP, were constructed. The plasmids encoding the peptides were transformed into yeast cells for expression of the peptides; the results showed that the former peptide was expressed as single component, while the latter was expressed as a mixture of two components (isomer 1 and isomer 2). The expression results together with studies of circular dichoism, disulfide rearrangement, and refolding lead us to deduce that isomer 1 corresponds to the swap form and the isomer 2 corresponds to the native form. We further demonstrate that the sequence 1-4 plus B9 of IGF-1 B-domain can make PIP fold into two structures, while sequence 1-5 of insulin B-chain can make IGF-1 fold into one unique structure. In other words, it is the IGF-1 B-domain sequence that 1-4 allows IGF-1 folding into two thermodynamically stable tertiary structures; this sequence plus its residue B9E can change PIP folding behavior from folding into one unique structure to two thermodynamically stable structures, like that of IGF-1.  相似文献   

9.
Guo ZY  Shen L  Feng YM 《Biochemistry》2002,41(34):10585-10592
Insulin and insulin-like growth factor 1 (IGF-1) share homologous sequence, similar three-dimensional structure, and weakly overlapping biological activity, but different folding information is stored in their homologous sequences: the sequence of insulin encodes one unique thermodynamically stable three-dimensional structure while that of IGF-1 encodes two disulfide isomers with different three-dimensional structure but similar thermodynamic stability. Their different folding behavior probably resulted from the different energetic state of the intra A-chain/domain disulfide: the intra A-chain disulfide of insulin is a stable bond while that of IGF-1 is a strained bond with high energy. To find out the sequence determinant of the different energetic state of their intra A-chain/domain disulfide, the following experiments were carried out. First, a local chimeric single-chain insulin (PIP) with the A8-A10 residues replaced by the corresponding residues of IGF-1 was prepared. Second, the disulfide stability of two global hybrids of insulin and IGF-1, Ins(A)/IGF-1(B) and Ins(B)/IGF-1(A), was investigated. The local segment swap had no effect on the fidelity of disulfide pairing and the disulfide stability of PIP molecule although the swapped segment is close to the intra A-chain/domain disulfide. In redox buffer which favors the disulfide formation for most proteins, Ins(A)/IGF-1(B) cannot form and maintain its native disulfides just like that of IGF-1, while the disulfides of Ins(B)/IGF-1(A) are stable in the same condition. One major equilibrium intermediate with two disulfides of Ins(A)/IGF-1(B) was purified and characterized. V8 endoproteinase cleavage and circular dichroism analysis suggested that the intra A-chain/domain disulfide was reduced in the intermediate. Our present results suggested that the energetic state of the intra A-chain/domain disulfide of insulin and IGF-1 was not controlled by the A-chain/domain sequence close to this disulfide but was mainly controlled by the sequence of the B-chain/domain.  相似文献   

10.
Insulin-like growth factor-1 (IGF-1) has many insulin-like activities, including stimulation of glucose uptake in skeletal muscle. However, those with diabetes or chronic liver disease are insulin resistant but show a normal hypoglycemic response to IGF-1. We have previously shown that insulin sensitivity depends on a hepatic parasympathetic reflex release of a hormone from the liver. The hypothesis was tested that insulin action, but not IGF-1 action, is dependent on the hepatic parasympathetic reflex. Glucose disposal in response to three doses of IGF-1 (25, 100, 200 microg/kg) was determined in rats. IGF-1 at 200 microg/kg had similar effect on glucose disposal as did 50 mU/kg of insulin. Interruption of the hepatic parasympathetic reflex either by surgical ablation of the anterior nerve plexus or by atropine (1.0 mg/kg) resulted in insulin, but not IGF-1, resistance. Sixteen hours of fasting resulted in insulin, but not IGF-1, resistance. In conclusion, insulin, but not IGF-1, triggers the hepatic parasympathetic dependent release of a putative hepatic insulin sensitizing substance (HISS) that stimulates glucose uptake in skeletal muscle.  相似文献   

11.
pp120 (Ceacam 1) undergoes ligand-stimulated phosphorylation by the insulin receptor, but not by the insulin-like growth factor 1 receptor (IGF-1R). This differential phosphorylation is regulated by the C terminus of the beta-subunit of the insulin receptor, the least conserved domain of the two receptors. In the present studies, deletion and site-directed mutagenesis in stably transfected hepatocytes derived from insulin receptor knockout mice (IR(-/-)) revealed that Tyr(1316), which is replaced by the nonphosphorylatable phenylalanine in IGF-1R, regulated the differential phosphorylation of pp120 by the insulin receptor. Similarly, the nonconserved Tyr(1316) residue also regulated the differential effect of pp120 on IGF-1 and insulin mitogenesis, with pp120 downregulating the growth-promoting action of insulin, but not that of IGF-1. Thus, it appears that pp120 phosphorylation by the insulin receptor is required and sufficient to mediate its downregulatory effect on the mitogenic action of insulin. Furthermore, the current studies revealed that the C terminus of the beta-subunit of the insulin receptor contains elements that suppress the mitogenic action of insulin. Because IR(-/-) hepatocytes are derived from liver, an insulin-targeted tissue, our observations have finally resolved the controversy about the role of the least-conserved domain of insulin and IGF-1Rs in mediating the difference in the mitogenic action of their ligands, with IGF-1 being more mitogenic than insulin.  相似文献   

12.
Moderate calorie restriction (CR) (~60% of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IR(Tyr1162/1163), IGF-1R(Tyr1135/1136), IRS-1(Ser312), PTEN(Ser380), Akt(Ser473), GSK3α(Ser21), GSK3β(Ser9)) and mTOR (TSC2(Ser939), mTOR(Ser2448), P70S6K(Thr412), RPS6(Ser235/236)) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.  相似文献   

13.
Competitive hormone binding studies with membrane and partially purified receptors from Xenopus laevis oocytes revealed that the oocyte possesses high affinity (KD = 1-3 nM) binding sites for both insulin growth factors 1 and 2 (IGF-1 and IGF-2), but not for insulin. Consistent with these findings, IGF-1 activates hexose uptake by Xenopus oocytes with a KA (3 nM) identical with its KD, while IGF-2 and insulin activate hexose uptake with KA values of 50 nM and 200-250 nM, respectively, suggesting activation mediated through an IGF-1 receptor. Both IGF-1 and insulin activate receptor beta-subunit autophosphorylation and, thereby, protein substrate (reduced and carboxyamidomethylated lysozyme, i.e. RCAM-lysozyme) phosphorylation with KA values comparable to their respective KD values for ligand binding and KA values for activation of hexose uptake. The autophosphorylated beta-subunit(s) of the receptor were resolved into two discrete components, beta 1 and beta 2 (108 kDa and 94 kDa, respectively), which were phosphorylated exclusively on tyrosine and which exhibited similar extents of IGF-1-activated autophosphorylation. When added prior to autophosphorylation, RCAM-lysozyme blocks IGF-1-activated autophosphorylation and, thereby, IGF-1-activated protein substrate (RCAM-lysozyme) phosphorylation. Based on these findings, we conclude that IGF-1-stimulated autophosphorylation of its receptor is a prerequisite for catalysis of protein substrate phosphorylation by the receptor's tyrosine-specific protein kinase. The IGF-1 receptor kinase is implicated in signal transmission from the receptor, since anti-tyrosine kinase domain antibody blocks IGF-1-stimulated kinase activity in vitro and, when microinjected into intact oocytes, prevents IGF-1-stimulated hexose uptake.  相似文献   

14.
The human receptors for insulin-like growth factor 1 (IGF-1) and insulin, and two chimeric receptors consisting of ligand-binding, extracellular insulin receptor and intracellular IGF-1 receptor structures, have been expressed in NIH-3T3 fibroblasts. All four receptor types were synthesized, processed and transported to the cell surface to form high-affinity binding sites. All normal and chimeric receptors had an active tyrosine kinase which was regulated by homologous or heterologous ligands respectively. In addition, cell surface receptors were internalized efficiently and subjected to accelerated degradation in the presence of ligand. While all four types of receptor stimulated glucose transport with similar efficiency, they displayed significant differences in their mitogenic signalling potentials. Receptors with an IGF-1 receptor cytoplasmic domain were 10 times more active in stimulating DNA synthesis than the insulin receptor. In NIH-3T3 cells overexpressing wild-type and chimeric receptors, maximal growth responses obtained with IGF-1 or insulin alone were equivalent to those obtained with 10% fetal calf serum. We conclude that in the cell system employed the receptors for IGF-1 and insulin mediate short-term responses similarly, but display distinct characteristics in their long-term mitogenic signalling potentials.  相似文献   

15.
In this study we investigated the molecular mechanisms whereby insulin-like growth factor 1 (IGF-1) induced Twist gene expression and the role of Twist in the anti-apoptotic actions of the IGF-1 receptor. In NIH-3T3 fibroblasts overexpressing the human IGF-1 receptor (NWTb3), treatment with IGF-1 (10(-8) m) for 1 and 4 h increased the level of Twist mRNA as well as protein by 3-fold. In contrast, insulin at physiological concentrations did not stimulate Twist expression in NIH-3T3 fibroblasts overexpressing the human insulin receptor. The IGF-1 effect was specific for the IGF-1 receptor since, in cells overexpressing a dominant negative IGF-1 receptor, IGF-1 failed to increase Twist expression. Pre-incubation with the ERK1/2 inhibitor U0126 or expression of a dominant negative MEK-1 abolished the effect of IGF-1 on Twist mRNA expression in NWTb3 cells, suggesting that Twist induction by IGF-1 occurs via the mitogen-activated protein kinase signaling pathway. In vivo, IGF-1 injection increased the mRNA level of Twist in mouse skeletal muscle, the major site of Twist expression. Finally, using an antisense strategy, we demonstrated that a reduction of 40% in Twist expression decreased significantly the ability of IGF-1 to rescue NWTb3 cells from etoposide-induced apoptosis. Taken together, these results define Twist as an important factor involved in the anti-apoptotic actions of the IGF-1 receptor.  相似文献   

16.
Substrate competitive inhibitors of IGF-1 receptor kinase   总被引:9,自引:0,他引:9  
Blum G  Gazit A  Levitzki A 《Biochemistry》2000,39(51):15705-15712
IGF-1 and its receptor play a pivotal role in many cancers, and therefore, IGF-1R is an attractive target for the design of inhibitors. In this communication, we report on a number of lead compounds for inhibitors of the isolated IGF-1R kinase. The search for these compounds utilized two novel in vitro assays and was aided by the knowledge of the three-dimensional structure of the insulin receptor kinase domain, which is 84% homologous to the IGF-1R kinase domain. The most potent inhibitor found in these assays was tyrphostin AG 538, with an IC(50) = 400 nM. In computer modeling, AG 538 was placed in the kinase domain of the insulin receptor and was able to sit in place of tyrosines 1158 and 1162, which undergo autophosphorylation. Experimentally it is indeed found that AG 538 does not compete with ATP but competes with the IGF-1R substrate. We prepared I-OMe AG 538, which is more hydrophobic and less sensitive to oxidation than AG 538. Both AG 538 and I-OMe AG 538 inhibit IGR-1R autophosphorylation in intact cells in a dose-dependent manner but I-OMe-AG 538 is superior, probably because of its enhanced hydrophobic nature. Both compounds inhibit the activation of the downstream targets PKB and Erk2. These findings suggest that AG 538 and I-OMe-AG 538 can serve as a lead compound for the development of substrate competitive inhibitors of the IGF-1R. The possible advantage of substrate competitive inhibitors vis-à-vis ATP competitive inhibitors is discussed.  相似文献   

17.
Type 2 diabetes mellitus affects 6% of western populations and represents a major risk factor for the development of skin complications, of which impaired wound healing, manifested in e.g. "diabetic foot ulcer", is most prominent. Impaired angiogenesis is considered a major contributing factor to these non-healing wounds. At present it is still unclear whether diabetes-associated wound healing and skin vascular dysfunction are direct consequences of impaired insulin/IGF-1 signaling, or secondary due to e.g. hyperglycemia. To directly test the role of vascular endothelial insulin signaling in the development of diabetes-associated skin complications and vascular function, we inactivated the insulin receptor and its highly related receptor, the IGF-1 receptor, specifically in the endothelial compartment of postnatal mice, using the inducible Tie-2CreERT (DKO(IVE)) deleter. Impaired endothelial insulin/IGF-1 signaling did not have a significant impact on endothelial homeostasis in the skin, as judged by number of vessels, vessel basement membrane staining intensity and barrier function. In contrast, challenging the skin through wounding strongly reduced neo-angiogenesis in DKO(IVE) mice, accompanied by reduced granulation tissue formation reduced. These results show that endothelial insulin/IGF signaling is essential for neo-angiogenesis upon wounding, and imply that reduced endothelial insulin/IGF signaling directly contributes to diabetes-associated impaired healing.  相似文献   

18.
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1−/− and IRS-2−/− mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins.  相似文献   

19.
Wang L  Li W  Kong S  Wu P  Zhang C  Gu L  Wang M  Wang W  Gu R 《Biochimica et biophysica acta》2012,1823(7):1163-1169
The aim of the present study is to test the hypothesis that insulin-like-growth factor-1 (IGF-1) plays a role in the regulation of basolateral Cl channels in the thick ascending limb (TAL). The patch-clamp experiments demonstrated that application of IGF-I or insulin inhibited the basolateral 10-pS Cl channels. However, the concentration of insulin required for the inhibition of the Cl channels by 50% (K(1/2)) was ten times higher than those of IGF-1. The inhibitory effect of IGF-I on the 10-pS Cl channels was blocked by suppressing protein tyrosine kinase or by blocking phosphoinositide 3-kinase (PI3K). In contrast, inhibition of phospholipase C (PLC) failed to abolish the inhibitory effect of IGF-1 on the Cl channels in the TAL. Western blot analysis demonstrated that IGF-1 significantly increased the phosphorylation of phospholipid-dependent kinase (PDK) at serine residue 241 (Ser(241)) and AKT at Ser(473) in the isolated medullary TAL. Moreover, inhibition of PI3K with LY294002 abolished the effect of IGF-1 on the phosphorylation of PDK and AKT. The notion that the effect of IGF-1 on the 10-pS Cl channels was induced by stimulation of PDK-AKT-mTOR pathway was further suggested by the finding that rapamycin completely abolished the effect of IGF-1 on the 10-pS Cl channels in the TAL. We conclude that IGF-1 inhibits the basolateral Cl channels by activating PI3K-AKT-mTOR pathways. The inhibitory effect of IGF-1 on the Cl channels may play a role in ameliorating the ischemia-induced renal injury through IGF-1 administration.  相似文献   

20.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号