首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sudden cardiac death (SCD) is one of the leading causes of mortality in industrialized countries. Thus, identifying patients at high risk of SCD is an important goal. T wave alternans (TWA) is a new method for identifying patients with lethal ventricular tachyarrhythmias, and is dependent on heart rate. The maximal predictive accuracy is achieved at heart rates between 100 and 120 bpm, so that TWA is usually measured during exercise, pharmacological stress, or atrial pacing. It has been shown that TWA has high sensitivity and negative predictive value for predicting SCD after myocardial infarction and is also useful for predicting SCD in patients with nonischemic cardiomyopathy. Although the implantable cardioverter defibrillator (ICD) is now the primary therapy for preventing SCD, it is difficult to identify those patients who are susceptible to lethal ventricular tachyarrhythmias for primary prevention. In the prediction of SCD, TWA can be used as a screening test of appropriate patients for further electrophysiological examination and therapy.  相似文献   

2.
Atrial fibrillation (AF) is the most common cardiac arrhythmia, but our knowledge of the arrhythmogenic substrate is incomplete. Alternans, the beat-to-beat alternation in the shape of cardiac electrical signals, typically occurs at fast heart rates and leads to arrhythmia. However, atrial alternans have been observed at slower pacing rates in AF patients than in controls, suggesting that increased vulnerability to arrhythmia in AF patients may be due to the proarrythmic influence of alternans at these slower rates. As such, alternans may present a useful therapeutic target for the treatment and prevention of AF, but the mechanism underlying alternans occurrence in AF patients at heart rates near rest is unknown. The goal of this study was to determine how cellular changes that occur in human AF affect the appearance of alternans at heart rates near rest. To achieve this, we developed a computational model of human atrial tissue incorporating electrophysiological remodeling associated with chronic AF (cAF) and performed parameter sensitivity analysis of ionic model parameters to determine which cellular changes led to alternans. Of the 20 parameters tested, only decreasing the ryanodine receptor (RyR) inactivation rate constant (kiCa) produced action potential duration (APD) alternans seen clinically at slower pacing rates. Using single-cell clamps of voltage, fluxes, and state variables, we determined that alternans onset was Ca2+-driven rather than voltage-driven and occurred as a result of decreased RyR inactivation which led to increased steepness of the sarcoplasmic reticulum (SR) Ca2+ release slope. Iterated map analysis revealed that because SR Ca2+ uptake efficiency was much higher in control atrial cells than in cAF cells, drastic reductions in kiCa were required to produce alternans at comparable pacing rates in control atrial cells. These findings suggest that RyR kinetics may play a critical role in altered Ca2+ homeostasis which drives proarrhythmic APD alternans in patients with AF.  相似文献   

3.
The purpose of this study was to investigate how the endogenous catecholamine adrenaline protects sarcolemmal Ca(2+) flux through the L-type Ca(2+) channel (I(Ca)) during acute exposure to cold in the fish heart. We examined the response of I(Ca) to adrenergic stimulation at three temperatures (7 degrees, 14 degrees, and 21 degrees C) in atrial myocytes isolated from rainbow trout acclimated to 14 degrees C. We found that I(Ca) amplitude varied directly with test temperature and was increased by adrenergic stimulation (AD; 5 nM and 1 microM) at all temperatures. However, I(Ca) was significantly more sensitive to adrenergic stimulation at the coldest test temperature. In fact, at 7 degrees C in the absence of AD, I(Ca) was extremely low. The addition of 1 microM AD increased peak I(Ca) 7.2-fold at 7 degrees C, 2.6-fold at 14 degrees C, and 1.6-fold at 21 degrees C and ameliorated the temperature-dependent difference in Ca(2+) influx across the cell membrane. We suggest that this increased adrenergic sensitivity is a critical compensatory mechanism that allows the rainbow trout heart to maintain contractility during acute exposure to cold temperatures. In particular, the tonic level of adrenergic stimulation provided by circulating plasma catecholamines (i.e., in the nM concentration range) may be crucial for effective excitation-contraction coupling in the cold cardiomyocyte.  相似文献   

4.

Aims

Previous studies have demonstrated that microvolt T-wave alternans (TWA) screening in patients with ischaemic and dilated cardiomyopathy is effective in identifying patients at high or low risk of sudden cardiac death. It remains unclear which percentage of potential recipients of an implantable cardioverter defibrillator (ICD) are able to perform TWA testing using an exercise protocol which is, at this moment, the golden standard. In this study, we evaluated the feasibility of TWA in the risk stratification of potential ICD recipients with ischaemic or dilated cardiomyopathy.

Methods and Results

Medical charts of 165 primary prevention ICD recipients were reviewed to decide if patients were able to perform a TWA exercise test or not. Reasons to waiver a test were: atrial fibrillation or flutter, pacemaker dependency, recent (cardiovascular) surgery (<1 month) and inability to exercise. Of the potential ICD recipients 35% had one or more of these contraindications and were therefore not suitable for testing.

Conclusion

In several studies, TWA is a promising risk stratifier for predicting sudden cardiac death; however, in our population, 35% of the potential ICD candidates could not be tested. In order to fulfil its promise as a predictor for SCD, an alternative means to measure TWA needs to be evaluated.  相似文献   

5.
We discovered that the coupling beat interval from a slow to a tachycardiac pacing period considerably affected the pattern of the beat-to-beat alternation of the tachycardia-induced sustained contractile alternans. We analyzed the relationship between the coupling interval and the pattern and amplitude of the alternans in the isovolumic left ventricle of canine blood-perfused hearts. The alternans pattern and amplitude varied transiently over the first 30-50 beats and became gradually stable over the first minute in all 12 hearts. We discovered that stable alternans, even under the same tachycardiac pacing, had three different strong-weak beat patterns depending on the coupling interval. A relatively short coupling interval produced a representative sustained alternans of the strong and weak beats. A relatively long coupling interval produced a similar sustained alternans but in a reversed order of even- and odd-numbered beats counted from the coupling interval. However, sustained alternans disappeared after 1-3 specific coupling intervals. We conclude that ventricular pacing rate does not solely determine the pattern and amplitude of sustained contractile alternans induced by tachycardia.  相似文献   

6.
Macroscopic T wave alternans (TWA) associated with increased occurrence of ventricular arrhythmias has been reported in patients with Brugada syndrome. However, the mechanisms in this syndrome are still unclear. We evaluated the hypothesis that TWA in Brugada syndrome was caused by the dynamic instability and heterogeneity of action potentials (APs) in the right ventricle. Using an optical mapping system, we mapped APs on the epicardium or transmural surfaces of 28 isolated and arterially perfused canine right ventricular preparations having drug-induced Brugada syndrome (in micromol/l: 2.5-15 pinacidil, 5.0 terfenadine, and 5.0-13 pilsicainide). Bradycardia at cycle length (CL) of 2,632 +/- 496 ms (n = 19) induced alternating deep and shallow T waves in the transmural electrocardiogram. Compared with the shallow T waves, deep T waves were associated with epicardial APs having longer durations and larger domes. Adjacent regions having APs with alternating domes, with constant domes, and without domes coexisted simultaneously in the epicardium and caused TWA. In contrast to the alternating epicardial APs, midmyocardial and endocardial APs did not change during TWA. Alternans could be terminated by rapid (CL: 529 +/- 168 ms, n = 7) or very slow (CL: 3,000 ms, n = 7) pacing. The heterogeneic APs during TWA augmented the dispersion of repolarization both within the epicardium and from the epicardium to the endocardium and caused phase 2 reentry. In this drug-induced model of Brugada syndrome, heterogeneic AP contours and dynamic alternans in the dome of right ventricular epicardial, but not midmyocardial or endocardial, APs caused TWA and heightened arrhythmogenicity in part by increasing the dispersion of repolarization.  相似文献   

7.
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.  相似文献   

8.
Suppression of electrical alternans may be antiarrhythmic. Our previous computer simulations have suggested that increasing the rapid component of the delayed rectifier K(+) current (I(Kr)) suppresses alternans. To test this hypothesis, I(Kr) in isolated canine ventricular myocytes was increased by infection with an adenovirus containing the gene for the pore-forming domain of I(Kr) [human ether-a-go-go gene (HERG)]. With the use of the perforated or whole cell patch-clamp technique, action potentials recorded at different pacing cycle lengths (CLs) were applied to the myocytes as the command waveforms. HERG infection markedly increased peak I(Kr) during the action potential (from 0.54 +/- 0.03 pA/pF in control to 3.60 +/- 0.81 pA/pF). Rate-dependent alterations of peak I(Kr) were similar for freshly isolated myocytes and HERG-infected myocytes. In both cell types, I(Kr) increased when CL decreased from 1,000 to 500 ms and then decreased progressively as CL decreased further. During alternans at CL = 170 ms, peak I(Kr) was larger for the short than for the long action potential for both groups, but the difference in peak I(Kr) was larger for HERG-infected myocytes. The voltage at which peak I(Kr) occurred was significantly less negative in HERG-infected myocytes, in association with shifts of the steady-state voltage-dependent activation and inactivation curves to less negative potentials. Pacing at short CL induced stable alternans in freshly isolated myocytes and in cultured myocytes without HERG infection, but not in HERG-infected myocytes. These data support the idea that increasing I(Kr) may be a viable approach to suppressing electrical alternans.  相似文献   

9.

Background

Use of rate adaptive atrioventricular (AV) delay remains controversial in patients with biventricular (Biv) pacing. We hypothesized that a shortened AV delay would provide optimal diastolic filling by allowing separation of early and late diastolic filling at increased heart rate (HR) in these patients.

Methods

34 patients (75 ± 11 yrs, 24 M, LVEF 34 ± 12%) with Biv and atrial pacing had optimal AV delay determined at baseline HR by Doppler echocardiography. Atrial pacing rate was then increased in 10 bpm increments to a maximum of 90 bpm. At each atrial pacing HR, optimal AV delay was determined by changing AV delay until best E and A wave separation was seen on mitral inflow pulsed wave (PW) Doppler (defined as increased atrial duration from baseline or prior pacemaker setting with minimal atrial truncation). Left ventricular (LV) systolic ejection time and velocity time integral (VTI) at fixed and optimal AV delay was also tested in 13 patients. Rate adaptive AV delay was then programmed according to the optimal AV delay at the highest HR tested and patients were followed for 1 month to assess change in NYHA class and Quality of Life Score as assessed by Minnesota Living with Heart Failure Questionnaire.

Results

81 AV delays were evaluated at different atrial pacing rates. Optimal AV delay decreased as atrial paced HR increased (201 ms at 60 bpm, 187 ms at 70 bpm, 146 ms at 80 bpm and 123 ms at 90 bpm (ANOVA F-statistic = 15, p = 0.0010). Diastolic filling time (P < 0.001 vs. fixed AV delay), mitral inflow VTI (p < 0.05 vs fixed AV delay) and systolic ejection time (p < 0.02 vs. fixed AV delay) improved by 14%, 5% and 4% respectively at optimal versus fixed AV delay at the same HR. NYHA improved from 2.6 ± 0.7 at baseline to 1.7 ± 0.8 (p < 0.01) 1 month post optimization. Physical component of Quality of Life Score improved from 32 ± 17 at baseline to 25 ± 12 (p < 0.05) at follow up.

Conclusions

Increased heart rate by atrial pacing in patients with Biv pacing causes compromise in diastolic filling time which can be improved by AV delay shortening. Aggressive AV delay shortening was required at heart rates in physiologic range to achieve optimal diastolic filling and was associated with an increase in LV ejection time during optimization. Functional class improved at 1 month post optimization using aggressive AV delay shortening algorithm derived from echo-guidance at the time of Biv pacemaker optimization.  相似文献   

10.
We hypothesized that performanceof exercise during heart failure (HF) would lead to hypoperfusion ofactive skeletal muscles, causing sympathoactivation at lower workloadsand alteration of the normal hemodynamic and hormonal responses. Wemeasured cardiac output, mean aortic and right atrial pressures,hindlimb and renal blood flow (RBF), arterial plasma norepinephrine(NE), plasma renin activity (PRA), and plasma arginine vasopressin(AVP) in seven dogs during graded treadmill exercises and at rest. Incontrol experiments, sympathetic activation at the higher workloadsresulted in increased cardiac performance that matched the increasedmuscle vascular conductance. There were also increases in NE, PRA, and AVP. Renal vascular conductance decreased during exercise, such thatRBF remained at resting levels. After control experiments, HF wasinduced by rapid ventricular pacing, and the exercise protocols wererepeated. At rest in HF, cardiac performance was significantly depressed and caused lower mean arterial pressure, despite increased HR. Neurohumoral activation was evidenced by renal and hindlimb vasoconstriction and by elevated NE, PRA, and AVP levels, but it didnot increase at the mildest workload. Beyond mild exercise, sympathoactivation increased, accompanied by progressive renal vasoconstriction, a fall in RBF, and very large increases of NE, PRA,and AVP. As exercise intensity increased, peripheral vasoconstriction increased, causing arterial pressure to rise to near normal levels, despite depressed cardiac output. However, combined with redirection ofRBF, this did not correct the perfusion deficit to the hindlimbs. Weconclude that, in dogs with HF, the elevated sympathetic activity observed at rest is not exacerbated by mild exercise. However, withheavier workloads, sympathoactivation begins at lower workloads andbecomes progressively exaggerated at higher workloads, thus alteringdistribution of blood flow.

  相似文献   

11.
Ginseng botanicals are increasingly used as complementary or alternative medicines for a variety of cardiovascular diseases, yet little is known about their cellular actions in cardiac muscle. Electromechanical alternans (EMA) is a proarrhythmic cardiac abnormality that results from disturbances of intracellular Ca(2+) homeostasis. This study sought to determine whether a purified ginsenoside extract of ginseng, Re, exerts effects to suppress EMA and to gain insight into its mechanism of action. Alternans was induced by electrically pacing cardiomyocytes at room temperature. Re (> or = 10 nM) reversibly suppressed EMA recorded from cat ventricular and atrial myocytes and Langendorff-perfused cat hearts. In cat ventricular myocytes, Re reversibly suppressed intracellular Ca(2+) concentration ([Ca(2+)](i)) transient alternans. Re exerted no significant effects on baseline action potential configuration or sarcolemmal L-type Ca(2+) current (I(Ca,L)), Na(+) current, or total K(+) conductance. In human atrial myocytes, Re suppressed mechanical alternans and exerted no effect on I(Ca,L). In cat ventricular myocytes, Re increased [Ca(2+)](i) transient amplitude and decreased sarcoplasmic reticulum (SR) Ca(2+) content, resulting in an increase in fractional SR Ca(2+) release. In SR microsomes isolated from cat ventricles, Re had no effect on SR Ca(2+) uptake. Re increased the open probability of ryanodine receptors (RyRs), i.e., SR Ca(2+)-release channels, isolated from cat ventricles and incorporated into planar lipid bilayers. We concluded that ginsenoside Re suppresses EMA in cat atrial and ventricular myocytes, cat ventricular muscle, and human atrial myocytes. The effects of Re are not mediated via actions on sarcolemmal ion channels or action potential configuration. Re acts via a subcellular mechanism to enhance the opening of RyRs and thereby overcome the impaired SR Ca(2+) release underlying EMA.  相似文献   

12.
Oscillations in T-wave morphology, particularly T-wave alternans (TWA), have been fundamentally linked to increased susceptibility to ventricular fibrillation (VF). We investigated whether the escalation in complexity of T-wave oscillations before VF is attributable to increased spatial heterogeneity of repolarization. Peak interlead T-wave heterogeneity (TWH) was measured by second central moment analysis of T-wave morphology in epicardial electrograms in dogs during left anterior descending coronary artery occlusion. TWH differentiated cases in which myocardial ischemia provoked VF from those without VF (563 +/- 56 vs. 139 +/- 36 microV, P < 0.01). In the former group, progressive, significant increases in TWH above preocclusion baseline (70 +/- 8 microV) began at 2.25 min after the start of occlusion and were associated successively with TWA (at 155 +/- 19 microV), T-wave multupling (at 386 +/- 100 microV), complex oscillatory T-wave forms (at 560 +/- 76 microV), discordant TWA (at 572 +/- 98 microV), and VF at 4.36 +/- 0.14 min. TWH in precordial ECGs in 12 pigs during angioplasty-balloon-induced myocardial ischemia also discriminated animals that experienced VF (from 90 +/- 14 at baseline to 382 +/- 39 microV, P < 0.05) from those without VF (from 96 +/- 17 at baseline to 199 +/- 61 microV, NS). Ischemia-induced changes in ST segment and T-wave amplitude did not predict VF. Heightened spatial heterogeneity of repolarization, as assessed by second central moment analysis of TWH, underlies TWA and increased risk for ischemia-induced VF. Monitoring spatial TWH from precordial leads could prove useful in stratifying risk for life-threatening arrhythmias.  相似文献   

13.
A reliable basal heart rate (HR) measurement in freely moving newborn mice was accomplished for the first time by using a novel noninvasive piezoelectric transducer (PZT) sensor. The basal HR was approximately 320 beats/min at postnatal day (P)0 and increased with age to approximately 690 beats/min at P14. Contribution of autonomic control to HR was then assessed. Sympathetic blockade with metoprolol significantly reduced basal HR at both P6 (-236 +/- 23 beats/min; mean +/- SE) and P12 (-105 +/- 8 beats/min), but atropine was without effect, indicating the predominant tonic adrenergic stimulation and absence of vagal control for basal HR in newborn mice. In contrast to stable basal HR during 5-min recording, HR measured by ECG (ECG-HR) was markedly decreased because of the restraint stress of attaching ECG electrodes, with accompanying freezing behavior. ECG-HR lowered and further decreased gradually during 5 min (slow cardiodeceleration) at P0-P3 and rapidly decreased and gradually recovered within 5 min (transient bradycardia) at P9-P14. The response was not uniform in P4-P8 mice: they showed either of these two patterns or sustained bradycardia (9-29%), and the number of mice that showed transient bradycardia increased with age (30-100%) during the period. Studies with autonomic blockade suggest that the slow cardiodeceleration and transient bradycardia are mediated mainly by withdrawal of adrenergic stimulation and phasic vagal activation, respectively, and the autonomic control of HR response to restraint stress is likely to change from the withdrawal of adrenergic stimulation to the phasic vagal activation at different stages during P4-P8 in individual mice. The PZT sensor may offer excellent opportunities to monitor basal HR of small animals noninvasively.  相似文献   

14.
Cardiac alternans is a dangerous rhythm disturbance of the heart, in which rapid stimulation elicits a beat-to-beat alternation in the action potential duration (APD) and calcium (Ca) transient amplitude of individual myocytes. Recently, “subcellular alternans”, in which the Ca transients of adjacent regions within individual myocytes alternate out-of-phase, has been observed. A previous theoretical study suggested that subcellular alternans may result during static pacing from a Turing-type symmetry breaking instability, but this was only predicted in a subset of cardiac myocytes (with negative Ca to voltage (Ca→Vm) coupling) and has never been directly verified experimentally. A recent experimental study, however, showed that subcellular alternans is dynamically induced in the remaining subset of myocytes during pacing with a simple feedback control algorithm (“alternans control”). Here we show that alternans control pacing changes the effective coupling between the APD and the Ca transient (VmCa coupling), such that subcellular alternans is predicted to occur by a Turing instability in cells with positive Ca→Vm coupling. In addition to strengthening the understanding of the proposed mechanism for subcellular alternans formation, this work (in concert with previous theoretical and experimental results) illuminates subcellular alternans as a striking example of a biological Turing instability in which the diffusing morphogens can be clearly identified.  相似文献   

15.
魏珑  赵捷  徐舫舟  赵艳娜 《生物磁学》2009,(16):3131-3134
目的:研究T波段幅度、形态逐拍交替变化的心电变异现象检测。方法:本研究首先使用Mexican.hat小波检测R峰并对心电信号进行预处理;在提取T波矩阵方面为减少心拍间内差,采用点乘最大法,最大程度地对齐T波;最后基于时域相关分析方法检测T波交替幅度、交替心拍,追踪非稳态心电信号中短暂的交替数据段。结果:利用相关分析法对样本数据所测交替幅度与谱分析法相比更加显著,并且可以检测出谱分析方法无法检测的交替心拍。结论:时域相关分析方法能够更精确地追踪T波交替随时间变化的现象,但其对输入数据要求较高,因此在检测中可以先通过谱分析方法检测为阳性TWA的基础上,再对心电信号进行相关分析,从而确定非稳态交替时间段和更加准确的交替幅度。  相似文献   

16.
We tested the hypotheses that women completing 56 days, 6 degrees head-down bed-rest (HDBR) would have changes in sensitivity of cardiovascular responses to adrenergic receptor stimulation and that frequent aerobic and resistive exercise would prevent these changes. Twenty-four women, eight controls, eight exercisers (lower body negative pressure treadmill and flywheel resistance exercise), and eight receiving nutritional supplement but no exercise were studied in baseline and during administration of the beta-agonist isoproterenol (ISO) and the alpha- and beta-agonist norepinephrine (NOR). In the control and nutrition groups, HDBR increased heart rate (HR) and reduced stroke volume (SV), and there was a significantly greater increase in HR with ISO after HDBR. In contrast, the HR and SV of the exercise group were unchanged from pre-HDBR. After HDBR, leg vascular resistance (LVR) was greater than pre-HDBR in the exercise group but reduced in control and nutrition. LVR was reduced with ISO and increased with NOR. Changes in total peripheral resistance were similar to those of LVR but of smaller magnitude, perhaps because changes in cerebrovascular resistance index were directionally opposite to those of LVR. There were no changes in sensitivity of the vascular resistance responses to adrenergic stimulation. The HR response might reflect a change in sensitivity or a necessary response to the reduction in SV after HDBR in control and nutrition groups. The reduced peripheral vascular resistance after HDBR might help to explain orthostatic intolerance in women. Exercise was an effective countermeasure to the HDBR effects.  相似文献   

17.
Cardiac restitution is an important factor in arrhythmogenesis. Steep positive action potential duration and conduction velocity (CV) restitution slopes promote alternans and reentrant arrhythmias. We examined the consequences of supernormal conduction (characterized by a negative CV restitution slope) on patterns of conduction and alternans in strands of Luo-Rudy model cells and in cultured cardiac cell strands. Interbeat intervals (IBIs) were analyzed as a function of distance during S1S2 protocols and during pacing at alternating cycle lengths. Supernormal conduction was induced by decreasing [K+]o. In control [K+]o simulations, S1S2 intervals converged toward basic cycle length with a length constant determined by both CV and the CV restitution slope. During alternant pacing, the amplitude of IBI alternans converged with a shorter length constant, determined also by the action potential duration restitution slope. In contrast, during supernormal conduction, S1S2 intervals and the amplitude of alternans diverged. This amplification (resonance) led to phase-locked or more complex alternans patterns, and then to distal conduction block. The convergence/divergence of IBIs was verified in the cultured strands, in which naturally occurring tissue heterogeneities resulted in prominent discontinuities of the spatial IBI profiles. We conclude that supernormal conduction potentiates alternans and spatial analysis of IBIs represents a powerful method to locate tissue heterogeneities.  相似文献   

18.

Background

Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias.

Methods

Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol.

Results

As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (p< 0.05) and reduced with SERCA2a inhibition (p<0.05). Surprisingly, there was no difference in susceptibility to Ca-ALT with either SERCA2a overexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p < 0.05) and concomitant increase in SR Ca2+ load (p<0.05). Based on these observations we tested in-vivo atrial arrhythmia inducibility in control and Ad.SERCA2a animals using an esophageal atrial burst pacing protocol. There were no inducible atrial arrhythmias in Ad.GFP (n = 4) animals though 20% of Ad.SERCA2a (n = 5) animals had inducible atrial arrhythmias (p = 0.20).

Conclusions

Our findings suggest that unlike the ventricle, SERCA2a is not a key regulator of cardiac alternans in the atrium. Importantly, SERCA2a overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic.  相似文献   

19.
The objective of this study was to determine whether acute volume loading elevates T-wave alternans (TWA) in dogs with structurally normal hearts. TWA predicts sudden cardiac arrest in patients with left ventricular dysfunction and congestive heart failure. However, volume load and ventricular stretch may themselves precipitate arrhythmias. It is unclear to what extent volume load causes TWA. In six male mongrel dogs [25.8 kg (SD 4.2)] under general anesthesia, we measured TWA during progressive atrial pacing to 160 beats/min. Pacing was performed at baseline, at the midpoint and peak of a saline infusion designed to induce acute CHF, and then during diuresis. Dog 1 was hypothermic throughout the protocol and excluded from analysis. For dogs 2-6, 102 ml/kg (SD 30) were infused over 315 min (SD 50), causing pulmonary capillary wedge pressure to rise from 9.6 (SD 3.5) to 21.2 mmHg (SD 1.6) (P < 0.01), and heart rate variability to fall (P < 0.01). TWA magnitude (Valt) rose in all dogs with volume load (P < 0.001). Compared with baseline, TWA at peak infusion had higher magnitude [Valt 3.4 (SD 1.95) vs. 0.5 muV (SD 0.35); P = 0.011] and occurred at lower heart rates [128 (SD 6) vs. 151 beats/min (SD 12); P = 0.008]. Net volume load was linearly related to Valt (P < 0.01), with each 10 ml/kg net volume load increasing Valt by 0.23 muV. Acute volume overload elevates TWA in normal canine hearts. Although dramatic, however, this effect may contribute clinically to abnormal TWA only in patients with marked volume overload. Future studies should examine the interaction of fluid overload, myocardial disease, and arrhythmia susceptibility.  相似文献   

20.
T-wave alternans, an important arrhythmogenic factor, has recently been described in human fetuses. Here we sought to determine whether alternans can be induced in the embryonic mouse hearts, despite its underdeveloped sarcoplasmic reticulum (SR) and, if so, to analyze the response to pharmacological and autonomic interventions. Immunohistochemistry confirmed minimal sarcoplasmic-endoplasmic reticulum Ca-ATPase 2a expression in embryonic mouse hearts at embryonic day (E) 10.5 to E12.5, compared with neonatal or adult mouse hearts. We optically mapped voltage and/or intracellular Ca (Ca(i)) in 99 embryonic mouse hearts (dual mapping in 64 hearts) at these ages. Under control conditions, ventricular action potential duration (APD) and Ca(i) transient alternans occurred during rapid pacing at an average cycle length of 212 +/- 34 ms in 57% (n = 15/26) of E10.5-E12.5 hearts. Maximum APD restitution slope was steeper in hearts developing alternans than those that did not (2.2 +/- 0.6 vs. 0.8 +/- 0.4; P < 0.001). Disabling SR Ca(i) cycling with thapsigargin plus ryanodine did not significantly reduce alternans incidence (44%, n = 8/18, P = 0.5), whereas isoproterenol (n = 14) increased the incidence to 100% (P < 0.05), coincident with steepening APD restitution slope. Verapamil abolished Ca(i) transients (n = 9). Thapsigargin plus ryanodine had no major effects on Ca(i)-transient amplitude or its half time of recovery in E10.5 hearts, but significantly depressed Ca(i)-transient amplitude (by 47 +/- 8%) and prolonged its half time of recovery (by 18 +/- 3%) in E11.5 and older hearts. Embryonic mouse ventricles can develop cardiac alternans, which generally is well correlated with APD restitution slope and does not depend on fully functional SR Ca(i) cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号