首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Head ML  Hunt J  Brooks R 《Biology letters》2006,2(3):341-344
Differential allocation of reproductive effort towards offspring of attractive mates is a form of post-copulatory mate choice. Although differential allocation has been demonstrated in many taxa, its evolutionary implications have received little attention. Theory predicts that mate choice will lead to a positive genetic correlation between female preference and male attractiveness. This prediction has been upheld for pre-copulatory mate choice, but whether such a relationship between male attractiveness and female differential allocation exists has never been tested. Here, we show that both female pre-copulatory mate choice and post-copulatory differential allocation are genetically associated with male attractiveness in house crickets, Acheta domesticus. Daughters of attractive males mated sooner and laid more eggs when paired with larger males. These forms of mate choice are strongest in large females, suggesting that costs decrease with increasing female size. The genetic association between attractiveness and differential allocation suggests potential for differential allocation to become exaggerated by coevolutionary runaway processes in an analogous manner to pre-copulatory choice. Sexual selection is thus likely to be stronger than predicted by pre-copulatory choice alone.  相似文献   

2.
Female investment in offspring size and number has been observed to vary with the phenotype of their mate across diverse taxa. Recent theory motivated by these intriguing empirical patterns predicted both positive (differential allocation) and negative (reproductive compensation) effects of mating with a preferred male on female investment. These predictions, however, focused on total reproductive effort and did not distinguish between a response in offspring size and clutch size. Here, we model how specific paternal effects on fitness affect maternal allocation to offspring size and number. The specific mechanism by which males affect the fitness of females or their offspring determines whether and how females allocated differentially. Offspring size is predicted to increase when males benefit offspring survival, but decrease when males increase offspring growth rate. Clutch size is predicted to increase when males contribute to female resources (e.g. with a nuptial gift) and when males increase offspring growth rate. The predicted direction and magnitude of female responses vary with female age, but only when per-offspring paternal benefits decline with clutch size. We conclude that considering specific paternal effects on fitness in the context of maternal life-history trade-offs can help explain mixed empirical patterns of differential allocation and reproductive compensation.  相似文献   

3.
Organisms allocate resources to reproduction in response to the costs and benefits of current and future reproductive opportunities. According to the differential allocation hypothesis, females allocate more resources to high-quality males. We tested whether a fish species lacking parental care (zebrafish, Danio rerio) expresses male size-dependent differential allocation in monogamous spawning trials. In addition, we tested whether reproductive allocation by females is affected by previous experience of different-quality males, potentially indicating plasticity in mate choice. To that end, females were conditioned to large, small or random-sized males (controls) for 14 days to manipulate females'' expectations of the future mate quality. Females showed a clear preference for large males in terms of spawning probability and clutch size independent of the conditioning treatment. However, when females experienced variation in male size (random-sized conditioning treatment) they discriminated less against small males compared to females conditioned to large and small males. This might suggest that differential allocation and size-dependent sexual selection is of less relevance in nature than revealed in the present laboratory study.  相似文献   

4.
Parental investment and sexually‐selected signals can be intimately related, either because the signals indicate the amount of investment that an individual is prepared to make, and hence its value as a mate (the ‘good parent process’), or because individuals are selected to vary their own investment in relation to their mate’s signals (‘differential allocation’ or ‘reproductive compensation’). Correlations between parental investment and the sexually selected signals of both an individual and its mate are therefore of central interest in sexual selection. Blue tits Cyanistes caeruleus are an ideal study species to investigate such correlations because they provide substantial amounts of biparental care and possess sexually‐selected structural UV coloration that seems to signal attractiveness in both sexes. We investigated whether feeding rates of male and female blue tits were correlated with either their own or their mate’s UV coloration, and whether any such correlation was affected by the sex ratio of the brood. We also investigated whether any such correlations were reflected in offspring phenotype. Feeding rates were not correlated with either sex of parent’s own UV coloration. However, they were correlated with the mate’s UV coloration, but in opposite directions in males and females: females had higher feeding rates when mated to bright UV males, implying differential allocation, while males had lower feeding rates when mated to bright UV females, implying reproductive compensation. These relationships were unaffected by the sex ratio of the brood. In addition, fledgling tarsus length, but not mass, was related to male UV coloration, and to female UV coloration in interaction with male age. These results suggest that both male and female attractiveness influence parental investment of the mate, and that this in turn affects offspring phenotype. We found no evidence for differential sex allocation.  相似文献   

5.
The differential allocation hypothesis predicts that parents should adjust their current investment in relation to perceived mate attractiveness if this affects offspring fitness. It should be selectively advantageous to risk more of their future reproductive success by investing heavily in current offspring of high reproductive value but to decrease investment if offspring value is low. If the benefits of mate attractiveness are limited to a particular offspring sex we would instead expect relative investment in male versus female offspring to vary with mate attractiveness, referred to as 'differential sex allocation'. We present strong evidence for differential allocation of parental feeding effort in the wild and show an immediate effect on a component of offspring fitness. By experimentally reducing male UV crown coloration, a trait known to indicate attractiveness and viability in wild-breeding blue tits (Parus caeruleus), we show that females, but not males, reduce parental feeding rates and that this reduces the skeletal growth of offspring. However, differential sex allocation does not occur. We conclude that blue tit females use male UV coloration as an indicator of expected offspring fitness and adjust their investment accordingly.  相似文献   

6.
When individuals receive different returns from their reproductive investment dependent on mate quality, they are expected to invest more when breeding with higher quality mates. A number of studies over the past decade have shown that females may alter their reproductive effort depending on the quality/attractiveness of their mate. However, to date, despite extensive work on parental investment, such a differential allocation has not been demonstrated in fish. Indeed, so far only two studies from any taxon have suggested that females alter the quality of individual offspring according to the quality/attractiveness of their mate. The banggai cardinal fish is an obligate paternal mouth brooder where females lay few large eggs. It has previously been shown that male size determines clutch weight irrespective of female size in this species. In this study, I investigated whether females perform more courtship displays towards larger males and whether females allocate their reproductive effort depending on the size of their mate by experimentally assigning females to either large or small males. I found that females displayed more towards larger males, thereby suggesting a female preference for larger males. Further, females produced heavier eggs and heavier clutches but not more eggs when paired with large males. My experiments show that females in this species adjust their offspring weight and, thus, presumably offspring quality according to the size of their mate.  相似文献   

7.
Good genes models of mate choice assume heritability of fitness-related traits. However, maternal effects can inflate estimates of trait heritability, and genotype-environment interactions can have significant effects on good genes processes of evolution. Thus, partitioning genetic and maternal/environmental sources of variation in studies of good genes mate choice represents an empirical challenge. In this study, we used the dung beetle Onthophagus sagittarius to examine additive genetic and maternal effects on egg-to-adult offspring viability. We used a half-sib full-sib breeding design and manipulated the maternally provided environment by reducing or increasing the mass of the brood ball within which each offspring developed. We found evidence of differential allocation of investment by females in the brood balls they produced. However, experimental manipulations of maternal allocation to brood balls had only a weak and non-significant influence on the sire effects on offspring viability. Significant additive genetic effects on offspring viability were pervasive across our manipulations of the maternally provided larval environment. This finding indicates that although females do show differential allocation to offspring based on sire phenotype, ‘good genes’ benefits of mate choice are not dependent upon differential maternal allocation.  相似文献   

8.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

9.
Sexually reproducing organisms face a strong selective pressure to find a mate and ensure reproduction. An important criterion during mate‐selection is to avoid closely related individuals and subsequent potential fitness costs of resulting inbred offspring. Inbreeding avoidance can be active through kin recognition during mate choice, or passive through differential male and female‐biased sex ratios, which effectively prevents sib‐mating. In addition, sex allocation, or the resources allotted to male and female offspring, can impact mating and reproductive success. Here, we investigate mate choice, sex ratios, and sex allocation in dispersing reproductives (alates) from colonies of the termite Cubitermes tenuiceps. Termites have a short time to select a mate for life, which should intensify any fitness consequences of inbreeding. However, alates did not actively avoid inbreeding through mate choice via kin recognition based on genetic or environmental cues. Furthermore, the majority of colonies exhibited a female‐biased sex ratio, and none exhibited a male‐bias, indicating that differential bias does not reduce inbreeding. Sex allocation was generally female‐biased, as females also were heavier, but the potential fitness effect of this costly strategy remains unclear. The bacterium Wolbachia, known in other insects to parasitically distort sex allocation toward females, was present within all alates. While Wolbachia is commonly associated with termites, parasitism has yet to be demonstrated, warranting further study of the nature of the symbiosis. Both the apparent lack of inbreeding avoidance and potential maladaptive sex allocation implies possible negative effects on mating and fitness.  相似文献   

10.
Plastic reproductive allocation may allow individuals to maximize their fitness when conditions vary. Mate availability is one condition that may determine the fitness of an individual's allocation strategy. Using a variety of methods, I detected evidence of plastic allocation to asexual (clonal) reproduction in response to mate availability in the brittle star Ophiactis savignyi. There were more mature individuals in populations in which both sexes were present, and clones from these populations had fewer clone-mates than clones from single-sex populations. Animals placed with mates in a field experiment divided less frequently than animals without a mate. These findings demonstrate that animals reduce their allocation to asexual reproduction when mates are present and when a loss of fecundity associated with cloning would decrease offspring production. This plasticity is probably adaptive because it maximizes sexual-reproductive potential when fertilization is more likely, but maximizes survival of the clone when mates are absent and gametes are unlikely to be converted to offspring.  相似文献   

11.
Positive correlations between pollen-ovule ratio and seed size, and negative correlations between pollen-ovule ratio and pollen grain size have been noted frequently in a wide variety of angiosperm taxa. These relationships are commonly explained as a consequence of sex allocation on the basis of a simple model proposed by Charnov. Indeed, the theoretical expectation from the model has been the basis for interest in the empirical pattern. However, the predicted relationship is a necessary consequence of the mathematics of the model, which therefore has little explanatory power, even though its predictions are consistent with empirical results. The evolution of pollen-ovule ratios is likely to depend on selective factors affecting mating system, pollen presentation and dispensing, patterns of pollen receipt, pollen tube competition, female mate choice through embryo abortion, as well as genetic covariances among pollen, ovule, and seed size and other reproductive traits. To the extent the empirical correlations involving pollen-ovule ratios are interesting, they will need explanation in terms of a suite of selective factors. They are not explained simply by sex allocation trade-offs.  相似文献   

12.
The differential allocation hypothesis predicts that females should invest more in reproduction when paired with attractive males. We measured egg volume in Cape sugarbirds (Promerops cafer), a sexually dimorphic passerine, in relation to paternity of the offspring and in response to an experimental tail length treatment. We manipulated tail length, after pair formation, but before egg laying: males had their tails either shortened or left unmanipulated. Our manipulation was designed to affect female allocation in a particular breeding attempt rather than long‐term mate choice: males with shortened tails would appear to be signalling at a lower level than they should given their quality. We found that egg volume was smaller in the nests of males with experimentally shortened tails but larger when the offspring were the result of extra‐pair matings. Both these findings are consistent with the differential allocation hypothesis. We suggest that tail length may be used by females as a cue for mate quality, eliciting reduced female investment when breeding with social mates; and with males with shortened tails.  相似文献   

13.
Summary Avoidance of double oviposition (ADO) is the strategy not to oviposit on food patches where another female has oviposited before. If two females oviposit on the same patch, competitive and mating interactions within and between broods may lead to both a clutch size game and a sex allocation game between the two visitors. Though the two games interact, they are usually considered separately. Here, the ESS conditions for ADO are investigated in an analysis that combines the two games into one. The analysis strengthens the notion that it is really ADO that needs to be explained, because role-dependent net pay-off from an additional egg is most likely to favour double oviposition (DO). To a first female, the net payoff includes the effect on the eggs already present, whereas to a second female only the egg's gross pay-off matters. ADO is the evolutionary stable strategy (ESS) if there are enough patches still without eggs and either (1) the fitness of an additional egg is so low that the first female would not lay it even in the absence of detrimental effects on earlier offspring, so neither would a second female, or (2) differences in either the survival probability of the offspring or their reproductive success are sufficient to counterbalance the differential interest in the eggs already present. The first condition requires that eggs are relatively large, because then the decrease in pay-off between two successive eggs can be large. The second condition may be met when there is a time interval between ovipositions of subsequent females. The resulting developmental lag of the second clutch will (1) diminish its ability to compete for food and (2) lower its reproductive success when there is local mate competition and sons are too late to mate with daughters of the first female. If sons of first and second females compete on equal terms, however, ADO is unlikely. Male migration between patches reduces the influence of sex allocation strategies on clutch size decisions; the same holds for small clutch sizes. To illustrate the importance of considering sex allocation and clutch size decisions in an integrated way, oviposition strategies of plant-inhabiting predatory mites (Acari: Phytoseiidae) are discussed.  相似文献   

14.
The differential allocation theory predicts that females should invest more in offspring produced with attractive partners, and a number of studies support this prediction in birds. Females have been shown to increase reproductive investment when mated to males showing elaborated sexual traits. However, mate attractiveness might also depend on the interaction between male and female genotypes. Accordingly, females should invest more in offspring sired by individuals that are genetically dissimilar or carry superior alleles. Here, we show in zebra finches (Taeniopygia guttata) that pairs of unfamiliar genetic brothers and sisters are less likely to reproduce in comparison with randomly mated pairs. Among the brother–sister pairs, those that attempted to breed laid smaller clutches and of lower total clutch mass. Our results provide the first experimental evidence that females adjust their reproductive effort in response to the genetic similarity of their partners. Importantly, these results imply a female ability to assess relatedness of a social mate without prior association.  相似文献   

15.
Species with paternal care show less exaggerated sexual ornamentation than those in which males do not care, although direct benefits from paternal care can vastly exceed the indirect benefits of mate choice. Whether condition-dependent handicaps can signal parenting ability is controversial. The good-parent process predicts the evolution of honest signals of parental investment, whereas the differential-allocation model suggests a trade-off between the attractiveness of a mate and his care-provisioning. I show that both alternatives can arise from optimal allocations to advertisement, parental investment and future reproductive value of the male, and that the male''s marginal fitness gain from multiple matings determines which option should apply. The marginal gain is diminishing if opportunities for polygyny or extra-pair copulations are limited. Advertisement is then expected to be modest and honest, indicating genetic quality and condition-dependent parental investment simultaneously. Increasing marginal gains are likely to be related to cases where genetic quality has a significant influence on offspring fitness. This alternative leads to differential allocation with stronger advertisement, more frequent extra-pair copulations, and diminished male care. Reliability is also reduced if allocation benefits have thresholds, e.g. if there is a minimum body condition required for survival, or if females use a polygyny-threshold strategy of mate choice.  相似文献   

16.
Females may invest more in reproduction if they acquire mates of high phenotypic quality, because offspring sired by preferred partners may be fitter than offspring sired by non-preferred ones. In this study, we tested the differential maternal allocation hypothesis in the freshwater crayfish, Austropotamobius italicus, by means of a pairing experiment aimed at evaluating the effects of specific male traits (body size, chelae size and chelae asymmetry) on female primary reproductive effort. Our results showed that females laid larger but fewer eggs for relatively small-sized, large-clawed males, and smaller but more numerous eggs for relatively large-sized, small-clawed males. Chelae asymmetry had no effects on female reproductive investment. While the ultimate consequences of this pattern of female allocation remain unclear, females were nevertheless able to adjust their primary reproductive effort in relation to mate characteristics in a species where inter-male competition and sexual coercion may mask or obscure their sexual preferences. In addition, our results suggest that female allocation may differentially affect male characters, thus promoting a trade-off between the expression of different male traits.  相似文献   

17.
Mate attraction is widespread among animals and appears to facilitate mating and to prevent hybridisation between closely related species. In this study we investigated mate preference between two geographical isolates of Echinostoma caproni (Trematoda, Platyhelminth) and another species of the genus Echinostoma E. sp. Because previous experiments showed a partial reproductive isolation between echinostome isolates, we examined the possibility that such isolation resulted from differential mate attraction. We compared intra-isolate, inter-isolate and interspecific pairings using two in vitro experimental designs. In the first experiment we compared mate attraction of two individuals belonging to or not belonging to the same isolate, while in the second experiment we examined mate choice when individuals were in the presence of individuals from both the same isolate and from a different isolate or a different species. Distances between worms were measured over a period of 90 min. Results from both experiments suggested that mate attraction was similar for intra-isolate, inter-isolate or interspecific combinations. This lack of mate preference in vitro would therefore support an alternative hypothesis of a reproductive isolation through sperm selection.  相似文献   

18.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

19.
Female choice for male ornamental traits is widely accepted as a mechanism by which females maximize their reproductive success and/or offspring quality. However, there is an increasing empirical literature that shows a fitness benefit of genetic diversity and a tendency for females to use genetic dissimilarity as a criterion for mate choice. This genetic compatibility hypothesis for female mate choice presents a paradox. How can females use both an absolute criterion, such as male ornamentation, and a relative criterion, such as genetic dissimilarity, to choose their mates? Here, we present potential solutions for this dilemma and the empirical evidence supporting them. The interplay between these two contrasting forms of female mate choice presents an exciting empirical and theoretical challenge for evolutionary ecologists.  相似文献   

20.
Reproductive interference, interspecific sexual interactions that affect reproductive success, is found in various taxa and has been considered as a fundamental source of reproductive character displacement (RCD). Once RCD has occurred, persistent interspecific sexual interactions between species pairs are expected to diminish. However, reproductive interference has been reported from some species pairs that sympatrically coexist. Thus, the question arises, can reproductive interference persist even after RCD? We modeled the evolutionary dynamics of signal traits and mate recognition that determine whether interspecific sexual interactions occur. Our models incorporate male decision making based on the recognition of signal traits, whereas most previous models incorporate only female decision making in mate selection. Our models predict the following: (1) even when male decision making is incorporated, males remain promiscuous; (2) nevertheless, the frequency of interspecific mating is maintained at a low level after trait divergence; (3) the rarity of interspecific mating is due to strict female mate recognition and the consequent refusal of interspecific courtship by females; and (4) the frequency of interspecific mating becomes higher as the cost to females of refusing interspecific courtship increases. These predictions are consistent with empirical observations that males of some species engage in infrequent heterospecific mating. Thus, our models predict that reproductive interference can persist even after RCD occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号