首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting.  相似文献   

2.
BACKGROUND: In contrast to large, high-efficiency cytometers, mechanically sorting benchtop instruments provide a feasible alternative for shipboard cell sorting of oceanic microbial communities. However, sorting efficiency of these instruments is constrained by their maximum sorting rate of approximately 300 cells/s and by constant dilution of sorted samples by sheath flow. These factors often render too low sorted cell concentrations for postsorting experiments of oceanic phytoplankton populations of low natural abundance. A Cell Concentrator module has been marketed to overcome these dilution effects. Postsorting experiments also have to consider potential physiologic effects of cell sorting. Short-term physiologic effects on phytoplankton photosynthetic rates and esterase activities by mechanical flow sorting and cell concentration and on the efficiency of the Cell Concentrator module are evaluated. METHODS: Increasing numbers of the oceanic phytoflagellates Micromonas pusilla and Emiliania huxleyi were sorted and concentrated, and recovery in the concentrated samples was compared with the sorted-only samples (concentration rate) and the total number of sorted cells (recovery rate). Photosynthetic rates and metabolic activities of sorted and sorted/concentrated cells were compared with unsorted cells. Photosynthetic rates were estimated from 14CO2 uptake experiments and metabolic activity quantified cytometrically after cleavage of fluorescein diacetate. RESULTS: Irrespective of the total number of sorted cells, concentration rates between concentrated and sorted cells remained mostly below 10-fold and did not increase with the number of concentrated cells. Recovery rates in the concentrated samples amounted to fewer than 10% of total sorted cells, except for forceful resuspension attempts in the Concentrator insert (25-44%), which might be unsuitable for delicate species. Cell sorting resulted in a 24-49% decrease in photosynthetic rates. Metabolic activity within metabolically active cells was not affected by cell sorting, but the share of metabolically active cells decreased by 32-37%. Cell concentration did not affect metabolic activity or the fraction of active cells but did increase photosynthetic rate several-fold compared with unsorted cells. CONCLUSION: Low recovery of concentrated cells, probably due to cell adhesion to the filer bottom of the Concentrator insert, render the Cell Concentrator of limited use to overcome dilution problems of mechanical flow sorting, particularly when results are extrapolated to natural, low-abundance populations. Severe changes in photosynthetic rates also render concentrated cells suspicious for subsequent physiologic experiments. Mechanical sorting alone also exhibited significant physiologic effects on sorted cells, some of which might not be temporary. Comparable effects between mechanical sorting and droplet sorting as previously reported confirm that physiologic effects might be caused predominantly by shear stress and laser exposure during cytometric analysis rather than the sorting process. Sufficient recovery time must be allowed before postsorting experiments, but potential changes in cell physiology from the natural conditions during postsorting recovery must be considered.  相似文献   

3.
Microbial systems often exhibit staggering diversity, making the study of rare, interesting species challenging. For example, metagenomic analyses of mixed-cell populations are often dominated by the sequences of the most abundant organisms, while those of rare microbes are detected only at low levels, if at all. To overcome this, selective cultivation or fluorescence-activated cell sorting (FACS) can be used to enrich for the target species prior to sequence analysis; however, since most microbes cannot be grown in the lab, cultivation strategies often fail, while cell sorting requires techniques to uniquely label the cell type of interest, which is often not possible with uncultivable microbes. Here, we introduce a culture-independent strategy for sorting microbial cells based on genomic content, which we term PCR-activated cell sorting (PACS). This technology, which utilizes the power of droplet-based microfluidics, is similar to FACS in that it uses a fluorescent signal to uniquely identify and sort target species. However, PACS differs importantly from FACS in that the signal is generated by performing PCR assays on the cells in microfluidic droplets, allowing target cells to be identified with high specificity with suitable design of PCR primers and TaqMan probes. The PACS assay is general, requires minimal optimization and, unlike antibody methods, can be developed without access to microbial antigens. Compared to non-specific methods in which cells are sorted based on size, granularity, or the ability to take up dye, PACS enables genetic sequence-specific sorting and recovery of the cell genomes. In addition to sorting microbes, PACS can be applied to eukaryotic cells, viruses, and naked nucleic acids.  相似文献   

4.
Summary Quantitative histochemistry and cytochemistry enables a direct link to be made between metabolic functions such as the activity of lysosomal enzymes and the morphology of a tissue or a type of cell. Several approaches exist such as microchemistry based on (bio)chemical analysis of a single cell or a small piece of tissue dissected from a freeze-dried section. This technique has been routinely used for prenatal diagnosis of inherited enzyme defects and especially of lysosomal storage diseases. Other approaches are cytofluorometry or cytophotometry, which are based on the principle that a fluorescent or coloured final reaction product is precipitated at the site of the enzyme. The amount of final reaction product is analysed per cell or per unit volume of tissue using either a microscope cytofluorometer or flow cytometer for fluorescence measurements or an image analysing system or scanning and integrating cytophotometer for absorbance measurements.In principle, fluorescence methods are to be preferred over chromogenic methods because they are more sensitive and enable multiparameter analysis. However, only a limited number of fluorogenic methods are at hand that give a final reaction product which is sufficiently water-insoluble to guarantee good localisation. The best results have been obtained with methods based on naphthol AS-TR derivatives and with methods for the demonstration of protease activity using methoxynaphthylamine derivatives as substrates and 5-nitrosalicylaldehyde as coupling reagent. Chromogenic methods are far better with respect to localisation properties and, therefore, most commonly used for quantitative histochemical analysis of lysosomal enzyme activities. Besides the measurement of enzyme reactions in tissues and cells, chromogenic methods have been applied for the analysis of kinetic parameters of lysosomal enzymesin situ which could be a better reflection of enzyme kineticsin vivo than those obtainedin vitro with biochemical means in diluted solutions. Chromogenic methods have also been used in the lysosomal fragility test which is based on the lag phase occurring when a lysosomal enzyme reaction is analysed against time. The duration of the lag phase is a parameter for the stability of the lysosomal membrane and is affected by toxic compounds or under pathological conditions. This paper reviews briefly fundamental aspects and applications of quantitative histochemical and cytochemical methods in the study of lysosomes.  相似文献   

5.
Abstract The study of relationships between cell size and productivity is of key importance in microbial ecology to understand which members of natural aquatic communities are responsible for the overall activity and/or productivity. Flow sorting of microorganisms from different environmental samples was used to analyze the activity of bacterial cells depending on their biovolume. Bacterial cells from five different natural samples taken along the Mediterranean coast including fresh- and seawaters were incubated with tritiated leucine, then stained with SYTO 13 and sorted by flow cytometry according to their average side-angle-scattered (SSC) light. In all samples, a bell-shaped relationship was found between cell biovolume and activity, whereas activity of a given cell-size class varied between samples. In contrast, an inverse relationship was found between biovolumes and abundances. These results suggest that medium-sized cells with highest growth rates are probably submitted to intense grazing. For one sample, bacteria within five different size classes were sorted and the genetic diversity of cells within each sorted size class and that of the whole community were analyzed by the denaturing gradient gel electrophoresis (DGGE) method. The genetic diversity, as determined at the community level was highly represented into the pool of small cells, whereas only few species were present into larger cell subpopulations. The results suggest that only a few genotypes may be dominant within the largest and most productive cells. Furthermore, cell size polymorphism as well as heterogeneous cellular activities were found within some species. Received: January 2000; Accepted: April 2000; Online Publication: 28 August 2000  相似文献   

6.
BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability.  相似文献   

7.
8.
Systems biology along with what is now classified as cytomics provides an excellent opportunity for cytometry to become integrated into studies where identification of functional proteins in complex cellular mixtures is desired. The combination of cell sorting with rapid protein-profiling platforms offers an automated and rapid technique for greater clarity, accuracy, and efficiency in identification of protein expression differences in mixed cell populations. The integration of cell sorting to purify cell populations opens up a new area for proteomic analysis. This article outlines an approach in which well defined cell analysis and separation tools are integrated into the proteomic programs within a core laboratory. In addition we introduce the concepts of flow cytometry sorting to demonstrate the importance of being able to use flow cytometry as a cell separation technology to identify and collect purified cell populations. Data demonstrating the speed and versatility of this combination of flow cytometry-based cell separation and protein separation and subsequent analysis, examples of protein maps from purified sorted cells, and an analysis of the overall procedure will be shown. It is clear that the power of cell sorting to separate heterogeneous populations of cells using specific phenotypic characteristics increases the power of rapid automated protein separation technologies.  相似文献   

9.

Background

Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians.

Methods

Using fluorescence-activated cell sorting (FACS), coral cell suspension were sorted into different cellular populations using fluorescent cell markers that are non-species specific. Over 30 different cell markers were tested. Additionally, cell suspension from Aiptasia pallida was also tested, and a phagocytosis test was done as a downstream functional assay.

Results

We found that 24 of the screened markers positively labeled coral cells and 16 differentiated cell sub-populations. We identified 12 different cellular sub-populations using three markers, and found that each sub-population is primarily homogeneous. Lastly, we verified this technique in a sea anemone, Aiptasia pallida, and found that with minor modifications, a similar gating strategy can be successfully applied. Additionally, within A. pallida, we show elevated phagocytosis of sorted cells based on an immune associated marker.

Conclusions

In this study, we successfully adapted FACS for isolating coral cell populations and conclude that this technique is translatable for future use in other species. This technique has the potential to be used for different types of studies on the cellular stress response and other immunological studies.
  相似文献   

10.
BACKGROUND: Discrimination among viable, active, and inactive cells in aquatic ecosystems is of great importance to understand which species participate in microbial processes. In this study, a new approach combining flow cytometry (FCM), cell sorting, and molecular analyses was developed to compare the diversity of viable cells determined by different methods with the diversity of total cells and active cells. METHODS: Total bacteria were determined by SYBR-II staining. Viable bacteria were determined in water samples from different sites by plate count techniques and by the direct viable count (DVC) method. Substrate-responsive cells (i.e., DVC(+) cells) were distinguished from nonresponsive cells (i.e., DVC(-) cells) by FCM and sorted. The genetic diversity of the sorted cell fraction was compared with the diversity of the total microbial community and with that of the culturable cell fraction by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rDNA fragments. The same approach was applied to a seawater sample enriched with nutrients. In this case, actively respiring cells (CTC+) were also enumerated by FCM, sorted, and analyzed by DGGE. RESULTS: The diversity of viable cells varied depending on the methods (traditional culture or DVC) used for viability assessment. Some phylotypes detected in the fraction of viable cells were not detectable at the community level (from total DNA). Similar results were found for actively respiring cells. Inversely, some phylotypes found at the community level were not found in viable and active cell-sorted fractions. It suggests that diversity determined at the community level includes nonactive and nonviable cells. CONCLUSION: This new approach allows investigation of the genetic diversity of viable and active cells in aquatic ecosystems. The diversity determined from sorted cells provides relevant ecological information and uncultured organisms can also be detected. New investigations in the field of microbial ecology such as the identification of species able to maintain cellular activity under environmental changes or in the presence of toxic compounds are now possible.  相似文献   

11.
BACKGROUND: A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. METHODS: A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells. Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent culture. RESULTS: The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from the sorting chamber had been put on. The GFP transduced cells were sorted to 99% purity. Cells not expressing GFP at the time of sorting did not turn on the gene during subsequent culture. Un-sorted cells and cells sorted to be positive for GFP showed a decrease in the fraction of GFP positive cells during culture. CONCLUSIONS: Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument.  相似文献   

12.
The aim of this study was to establish a new tool for screening surface displayed peptide libraries based on the idea that cells expressing an enzyme inhibitor at the surface can be specifically labeled by the target enzyme. For this purpose peptide P15, exhibiting a K(i) value of 0.25 microM toward human cathepsin G, was expressed on the Escherichia coli cell surface by the use of Autodisplay. Purified cathepsin G was coupled to biotin and incubated with cells expressing the inhibitor. After addition of streptavidin-fluorescein isothiocyanate, these cells could be clearly differentiated from control cells by whole-cell fluorescence using flow cytometer analysis. To determine whether this protocol can be used for the sorting of single cells, a mixed population of cells with and without inhibitor was treated accordingly. Single cells were selected by increased fluorescence and sorted using fluorescence-activated cell sorting (FACS). Single cell clones were obtained and subjected to DNA sequence analysis. It turned out that the bacteria selected by this protocol displayed the correct peptide inhibitor at the cell surface. The protocol was then used to screen random peptide libraries, expressed at the cell surface, and a new lead structure for human cathepsin G (IC50 = 11.7 microM) was identified. The new drug discovery tool presented here consists of three steps: (a) surface display of peptide libraries, (b) selection of single cells with inhibiting structures by using the inherent affinity of the target enzyme, and (c) sorting of single cells, which were labeled by FACS.  相似文献   

13.
J W Visser  P de Vries 《Blood cells》1988,14(2-3):369-384
Mouse pluripotent hemopoietic stem cells could be enriched 100 to 200-fold by a procedure consisting of three steps: 1) equilibrium density centrifugation, 2) light-activated cell sorting on the basis of light scatter characteristics and fluorescence due to wheat germ agglutinin binding, 3) cell sorting after subsequent rhodamine 123 staining. The new isolation procedure does not make use of antibodies with mouse-strain restricted applicability, which were employed in earlier described methods. Therefore, it is more versatile. It is also faster due to diminished incubation time. Rhodamine 123 can also be used as a photosensitizer. The experimental conditions were, however, designed to prevent this action of the dye. Between 80% and 100% of the selected spleen-colony forming cells survived the labeling and sorting treatments. The procedure enriches for two types of stem cells. The rhodamine-dull fraction contains stem cells that form spleen colonies in lethally irradiated mice at 12-16 days and no spleen colonies at 8 days after transplantation. The rhodamine-bright fraction contains stem cells that give day-8 and day-12 spleen colonies. These latter cells, however, have a low radioprotective capacity and it can be argued that these are not self-renewing pluripotent stem cells. The heterogeneity of day-12 CFU-s (colony-forming unit spleen) that can be detected after labeling with rhodamine 123 has been observed earlier after treatment of bone marrow donor mice with 5-fluorouracil, and has led to the postulation of pre-CFU-s and a "generation-age" hypothesis for stem cells. Our presently sorted rhodamine dull cells resemble such pre-CFU-s.  相似文献   

14.
BACKGROUND: Fluorescence activated cell sorting (FACS)-based anti-gamma (gamma) positive selection and magnetic activated cell sorting (MACS)-based anti-CD45 depletion followed by anti-gamma positive staining have been two of the most frequently used methods to isolate fetal cells from maternal blood. To date, there has been no direct comparison of fetal cell recovery by these two methods. This study was designed to address this issue. METHODS: Fluorescence in situ hybridization (FISH) was performed on nucleated anti-gamma positive cells using X and Y probes. Twenty-four maternal blood samples were obtained immediately after elective termination of pregnancy to ensure a detectable number of fetal cells. RESULTS: The yield and purity of fetal nucleated erythrocytes (FNRBCs) was statistically higher in FACS sorted samples (P < 0.01). The specificity of staining for FNRBCs was statistically higher in MACS sorted samples (P < 0.01). CONCLUSIONS: The data from this study demonstrate that both techniques have benefits and limitations. FACS has the advantage of having higher yield, higher purity, higher FISH efficiency and ease in microscope analysis, and MACS has the advantage of having higher specificity and less cell loss during FISH.  相似文献   

15.
Recent studies using stem cells or cancer stem cells have revealed the importance of detecting minor populations of cells in blood or tissue and analyzing their biological characteristics. The only possible method for carrying out such procedures is fluorescence activated cell sorting (FACS). However, FACS has the following limitations. First, cells without an appropriate cell surface marker cannot be sorted. Second, the cells have to be kept alive during the sorting process in order to analyze their biological characteristics. If an intracellular antigen that was specific to a particular cell type could be stained with a florescent dye and then the cells can be sorted without causing RNA degradation, a more simple and universal method for sorting and analyzing cells with a specific gene expression pattern could be established since the biological characteristics of the sorted cells could then be determined by analyzing their gene expression profile. In this study, we established a basic protocol for messenger RNA quantification after FACS (FACS-mQ) targeting intracellular antigens. This method can be used for the detection and analysis of stem cells or cancer stem cells in various tissues.  相似文献   

16.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

17.
Methods based on flow cytometry and sorting, autoradiography, and cloning were used to evaluate the potential for the enumeration of 6-thioguanine-resistant human peripheral blood lymphocytes assumed to be deficient with respect to the enzyme hypoxanthine-guanine-phosphoribosyl-transferase. Flow cytometric sorting of proliferating cells in the late S- and the G2-stages by means of DNA content, as measured by propidium iodide fluorescence, enabled an enrichment of variant cells to about 99%. The main source of false events was contaminating doublets of G0/G1 cells appearing in the sorting region. Doublet discrimination measured as the difference between pulse height and area (Ortho-50) accomplished no further improvement. A combination of propidium iodide fluorescence and bromodeoxyuridine incorporation, measured by fluorescent anti-bromodeoxyuridine-DNA antibodies, allowed flow cytometric enrichment to about 99.99% of variant cells. By sorting of 3H-thymidine-labeled cell nuclei from the late S- and the G2-phases and subsequent autoradiographic evaluation, partly resistant variants could be discriminated; variant frequencies of the same magnitude as for the cell cloning methods were obtained.  相似文献   

18.
High-speed fluorescence-activated cell sorting is relevant for a plethora of applications, such as PCR-based techniques, microarrays, cloning, and propagation of selected cell populations. We suggest a simple cell-sorting technique to eliminate early and late apoptotic and necrotic cells, with good signal-to-noise ratio and a high-purity yield. The mitochondrial potential dye, TMRE (tetramethylrhodamine ethyl ester perchlorate), was used to separate viable and non-apoptotic cells from the cell sorting samples. TMRE staining is reversible and does not affect cell proliferation and viability. Sorted TMRE+ cells contained a negligible percentage of apoptotic and damaged cells and had a higher proliferative potential as compared with their counterpart cells, sorted on the basis of staining with DNA viability dye. This novel sorting technique using TMRE does not interfere with subsequent functional assays and is a method of choice for the enrichment of functionally active, unbiased cell populations.  相似文献   

19.
Efficient enrichment of staphylococcal cells displaying specific heterologous affinity ligands on their cell surfaces was demonstrated by using fluorescence-activated cell sorting. Using bacterial surface display of peptide or protein libraries for the purpose of combinatorial protein engineering has previously been investigated by using gram-negative bacteria. Here, the potential for using a gram-positive bacterium was evaluated by employing the well-established surface expression system for Staphylococcus carnosus. Staphylococcus aureus protein A domains with binding specificity to immunoglobulin G or engineered specificity for the G protein of human respiratory syncytial virus were expressed as surface display on S. carnosus cells. The surface accessibility and retained binding specificity of expressed proteins were demonstrated in whole-cell enzyme and flow cytometry assays. Also, affibody-expressing target cells could be sorted essentially quantitatively from a moderate excess of background cells in a single step by using a high-stringency sorting mode. Furthermore, in a simulated library selection experiment, a more-than-25,000-fold enrichment of target cells could be achieved through only two rounds of cell sorting and regrowth. The results obtained indicate that staphylococcal surface display of affibody libraries combined with fluoresence-activated cell sorting might indeed constitute an attractive alternative to existing technology platforms for affinity-based selections.  相似文献   

20.
BACKGROUND: Containment of potentially biohazardous aerosols that result from high-speed sorting of human cells has been an increasingly important problem in analytical cytometry. The current method for assessing the efficiency of aerosol containment involves detection of aerosols containing sorted T4 bacteriophage on lawns of T4-susceptible Escherichia coli on plates that are placed in and around the sort area. Although this method is sensitive, it is time consuming and involves maintenance and handling of bacteria and sorting of bacteriophage that may themselves serve as sources of contamination for sorted viable human cells. METHODS: Glo Germ (5-microm melamine copolymer resin beads), which are fluorescent under black light illumination, were sorted on a Beckman-Coulter Elite ESP sorter in order to visualize deposition of aerosols under normal and mock failure modes. RESULTS: Glo Germ was successfully used under both normal sorting conditions, as well as mock failure mode, to visualize aerosol formation. CONCLUSIONS: We have developed a method to examine aerosol containment using modified Glo Germ, a product used for teaching aseptic technique in hospitals, industry, restaurants, and schools. Use of this technique represents a rapid, inexpensive, qualitative analysis of the extent and location of aerosol contamination from cell sorters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号