首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rapid accumulation of biological data from novel high throughput technologies characteristic of genomic and proteomic research as well as advances in more traditional biological disciplines are leading to wider use of detailed and complex computational models of cell behavior. These models address a variety of dynamic intracellular processes ranging from interactions within a gene regulation network to intracellular and intercellular signal transduction. This review focuses on the current trends in computation cell biology, particularly emphasizing the role of experimental validation. The recent successes and future challenges facing computational cell biology are also discussed.  相似文献   

3.
4.
5.
6.
7.
We discuss how a theoretical synthetic biology research programme may liberate empiricism in biological sciences beyond the unaided human brain. Because synthetic biological systems are relatively small and largely independent of evolutionary contexts, they can be represented with mathematical models strongly founded on first principles of molecular biology and laws of statistical thermodynamics. A universal mathematical formalism for describing synthetic constructs may then be plausibly used to explain in unambiguous, quantitative terms how biological phenotypic complexity emerges as a result of well-defined biomolecular interactions. SynBioSS, a publicly available software package, is described that implements this mathematical formalism.  相似文献   

8.
A report of the 6th International Conference on Computational Methods in Systems Biology, Rostock, Germany, 12-15 October 2008.  相似文献   

9.
A report of the 6th International Conference on Computational Methods in Systems Biology, Rostock, Germany, 12-15 October 2008.One of the chief goals of systems biology is to build mechanistic mathematical models of biological systems to further the understanding of biological detail. Such models often aim at predicting the outcome of potentially interesting biological experiments, and if such predictions are confirmed by wet-lab observations, an important step forward is made. How exactly such models are constructed and how predictions are computed were at the core of a recent conference on Computational Methods in Systems Biology that brought 80 participants to Rostock, Germany (for conference proceedings see volume 5307 of Lecture Notes in Bioinformatics http://dx.doi.org/10.1007/978-3-540-88562-7).A simplistic approach to model construction might be to capture everything that is known about a system and simulate it in supercomputers. While this is appropriate for some systems, it is impossible or highly impracticable for many others. This is mostly due to the complexity of biological systems, which demand simplification to make them amenable to modeling. Such simplifications have to capture the essence of the processes of interest, while neglecting as many of the less important details as possible. Thus, one can consider model building in systems biology as the art of building caricatures of life: capture the essence, ignore the rest.  相似文献   

10.
11.
The cardiac cell is a complex biological system where various processes interact to generate electrical excitation (the action potential, AP) and contraction. During AP generation, membrane ion channels interact nonlinearly with dynamically changing ionic concentrations and varying transmembrane voltage, and are subject to regulatory processes. In recent years, a large body of knowledge has accumulated on the molecular structure of cardiac ion channels, their function, and their modification by genetic mutations that are associated with cardiac arrhythmias and sudden death. However, ion channels are typically studied in isolation (in expression systems or isolated membrane patches), away from the physiological environment of the cell where they interact to generate the AP. A major challenge remains the integration of ion-channel properties into the functioning, complex and highly interactive cell system, with the objective to relate molecular-level processes and their modification by disease to whole-cell function and clinical phenotype. In this article we describe how computational biology can be used to achieve such integration. We explain how mathematical (Markov) models of ion-channel kinetics are incorporated into integrated models of cardiac cells to compute the AP. We provide examples of mathematical (computer) simulations of physiological and pathological phenomena, including AP adaptation to changes in heart rate, genetic mutations in SCN5A and HERG genes that are associated with fatal cardiac arrhythmias, and effects of the CaMKII regulatory pathway and beta-adrenergic cascade on the cell electrophysiological function.  相似文献   

12.
Advanced imaging techniques have become a valuable tool in the study of complex biological processes at the cellular level in biomedical research. Here, we introduce a new technical platform for noninvasive in vivo fluorescence imaging of pancreatic islets using the anterior chamber of the eye as a natural body window. Islets transplanted into the mouse eye engrafted on the iris, became vascularized, retained cellular composition, responded to stimulation and reverted diabetes. Laser-scanning microscopy allowed repetitive in vivo imaging of islet vascularization, beta cell function and death at cellular resolution. Our results thus establish the basis for noninvasive in vivo investigations of complex cellular processes, like beta cell stimulus-response coupling, which can be performed longitudinally under both physiological and pathological conditions.  相似文献   

13.
14.
15.
We review the resources available to systematic biologists who wish to use computers to build classifications. Algorithm development is in an early stage, and only a few examples of integrated applications for systematic biology are available. The availability of data is crucial if systematic biology is to enter the computer age.  相似文献   

16.
A report of the 6th Annual Rocky Mountain Bioinformatics Conference, Aspen, USA, 4-7 December 2008.  相似文献   

17.
18.
This paper presents a computationally efficient, two-dimensional, feature point tracking algorithm for the automated detection and quantitative analysis of particle trajectories as recorded by video imaging in cell biology. The tracking process requires no a priori mathematical modeling of the motion, it is self-initializing, it discriminates spurious detections, and it can handle temporary occlusion as well as particle appearance and disappearance from the image region. The efficiency of the algorithm is validated on synthetic video data where it is compared to existing methods and its accuracy and precision are assessed for a wide range of signal-to-noise ratios. The algorithm is well suited for video imaging in cell biology relying on low-intensity fluorescence microscopy. Its applicability is demonstrated in three case studies involving transport of low-density lipoproteins in endosomes, motion of fluorescently labeled Adenovirus-2 particles along microtubules, and tracking of quantum dots on the plasma membrane of live cells. The present automated tracking process enables the quantification of dispersive processes in cell biology using techniques such as moment scaling spectra.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号