首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Galpha subunits and act in a G-protein-coupled receptor (GPCR)-specific manner. The conserved RGS domain accelerates the G subunit GTPase activity, whereas the variable amino-terminal domain participates in GPCR recognition. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL), which binds the third intracellular loop (3iL) of several GPCRs, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of alpha-adrenergic receptor (alphaAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant alphaAR(A293E) (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of betaAR-alphaAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, alphaAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2-/- cells and less sensitive to inhibition by RGS2 in spl-/- cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.  相似文献   

2.
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate Galpha signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G(q/11)-coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G(i/o)-coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G(q)alpha and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G(11)alpha in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.  相似文献   

3.
Regulators of G protein signaling (RGS proteins) are GTPase-activating proteins (GAPs) for G(i) and/or G(q) class G protein alpha subunits. RGS GAP activity is inhibited by phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) but not by other lipid phosphoinositides or diacylglycerol. Both the negatively charged head group and long chain fatty acids (C16) are required for binding and inhibition of GAP activity. Amino acid substitutions in helix 5 within the RGS domain of RGS4 reduce binding affinity and inhibition by PIP(3) but do not affect inhibition of GAP activity by palmitoylation. Conversely, the GAP activity of a palmitoylation-resistant mutant RGS4 is inhibited by PIP(3). Calmodulin binds all RGS proteins we tested in a Ca(2+)-dependent manner but does not directly affect GAP activity. Indeed, Ca(2+)/calmodulin binds a complex of RGS4 and a transition state analog of Galpha(i1)-GDP-AlF(4)(-). Ca(2+)/calmodulin reverses PIP(3)-mediated but not palmitoylation-mediated inhibition of GAP activity. Ca(2+)/calmodulin competition with PIP(3) may provide an intracellular mechanism for feedback regulation of Ca(2+) signaling evoked by G protein-coupled agonists.  相似文献   

4.
Homers are scaffolding proteins that bind G protein-coupled receptors (GPCRs), inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs), ryanodine receptors, and TRP channels. However, their role in Ca2+ signaling in vivo is not known. Characterization of Ca2+ signaling in pancreatic acinar cells from Homer2-/- and Homer3-/- mice showed that Homer 3 has no discernible role in Ca2+ signaling in these cells. In contrast, we found that Homer 2 tunes intensity of Ca2+ signaling by GPCRs to regulate the frequency of [Ca2+]i oscillations. Thus, deletion of Homer 2 increased stimulus intensity by increasing the potency for agonists acting on various GPCRs to activate PLCbeta and evoke Ca2+ release and oscillations. This was not due to aberrant localization of IP3Rs in cellular microdomains or IP3R channel activity. Rather, deletion of Homer 2 reduced the effectiveness of exogenous regulators of G proteins signaling proteins (RGS) to inhibit Ca2+ signaling in vivo. Moreover, Homer 2 preferentially bound to PLCbeta in pancreatic acini and brain extracts and stimulated GAP activity of RGS4 and of PLCbeta in an in vitro reconstitution system, with minimal effect on PLCbeta-mediated PIP2 hydrolysis. These findings describe a novel, unexpected function of Homer proteins, demonstrate that RGS proteins and PLCbeta GAP activities are regulated functions, and provide a molecular mechanism for tuning signal intensity generated by GPCRs and, thus, the characteristics of [Ca2+]i oscillations.  相似文献   

5.
Regulator of G protein signaling (RGS) proteins modulate signaling through pathways that use heterotrimeric G proteins as transducing elements. RGS1 is expressed at high levels in certain B cell lines and can be induced in normal B cells by treatment with TNF-alpha. To determine the signaling pathways that RGS1 may regulate, we examined the specificity of RGS1 for various G alpha subunits and assessed its effect on chemokine signaling. G protein binding and GTPase assays revealed that RGS1 is a Gi alpha and Gq alpha GTPase-activating protein and a potential G12 alpha effector antagonist. Functional studies demonstrated that RGS1 impairs platelet activating factor-mediated increases in intracellular Ca+2, stromal-derived factor-1-induced cell migration, and the induction of downstream signaling by a constitutively active form of G12 alpha. Furthermore, germinal center B lymphocytes, which are refractory to stromal-derived factor-1-triggered migration, express high levels of RGS1. These results indicate that RGS proteins can profoundly effect the directed migration of lymphoid cells.  相似文献   

6.
The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits. Here we demonstrate that TRPV6 interacts with the NH(2)-terminal domain of RGS2 in a Ca(2+)-independent fashion and that overexpression of RGS2 reduces the Na(+) and Ca(2+) current of TRPV6 but not that of TRPV5-transfected human embryonic kidney 293 (HEK293) cells. In contrast, overexpression of the deletion mutant DeltaN-RGS2, lacking the NH(2)-terminal domain of RGS2, in TRPV6-expressing HEK293 cells did not show this inhibition. Furthermore, cell surface biotinylation indicated that the inhibitory effect of RGS2 on TRPV6 activity is not mediated by differences in trafficking or retrieval of TRPV6 from the plasma membrane. This effect probably results from the direct interaction between RGS2 and TRPV6, affecting the gating properties of the channel. Finally, the scaffolding protein spinophilin, shown to recruit RGS2 and regulate GPCR-signaling via G(alpha), did not affect RGS2 binding and electrophysiological properties of TRPV6, indicating a GPCR-independent mechanism of TRPV6 regulation by RGS2.  相似文献   

7.
G protein-coupled receptors (GPCRs) transduce cellular signals from hormones, neurotransmitters, light, and odorants by activating heterotrimeric guanine nucleotide-binding (G) proteins. For many GPCRs, short term regulation is initiated by agonist-dependent phosphorylation by GPCR kinases (GRKs), such as GRK2, resulting in G protein/receptor uncoupling. GRK2 also regulates signaling by binding G alpha(q/ll) and inhibiting G alpha(q) stimulation of the effector phospholipase C beta. The binding site for G alpha(q/ll) resides within the amino-terminal domain of GRK2, which is homologous to the regulator of G protein signaling (RGS) family of proteins. To map the Galpha(q/ll) binding site on GRK2, we carried out site-directed mutagenesis of the RGS homology (RH) domain and identified eight residues, which when mutated, alter binding to G alpha(q/ll). These mutations do not alter the ability of full-length GRK2 to phosphorylate rhodopsin, an activity that also requires the amino-terminal domain. Mutations causing G alpha(q/ll) binding defects impair recruitment to the plasma membrane by activated G alpha(q) and regulation of G alpha(q)-stimulated phospholipase C beta activity when introduced into full-length GRK2. Two different protein interaction sites have previously been identified on RH domains. The G alpha binding sites on RGS4 and RGS9, called the "A" site, is localized to the loops between helices alpha 3 and alpha 4, alpha 5 and alpha 6, and alpha 7 and alpha 8. The adenomatous polyposis coli (APC) binding site of axin involves residues on alpha helices 3, 4, and 5 (the "B" site) of its RH domain. We demonstrate that the G alpha(q/ll) binding site on the GRK2 RH domain is distinct from the "A" and "B" sites and maps primarily to the COOH terminus of its alpha 5 helix. We suggest that this novel protein interaction site on an RH domain be designated the "C" site.  相似文献   

8.
Regulators of G protein signaling (RGS) proteins accelerate the GTPase activity of Galpha subunits to determine the duration of the stimulated state and control G protein-coupled receptor-mediated cell signaling. RGS2 is an RGS protein that shows preference toward Galpha(q).To better understand the role of RGS2 in Ca(2+) signaling and Ca(2+) oscillations, we characterized Ca(2+) signaling in cells derived from RGS2(-/-) mice. Deletion of RGS2 modified the kinetic of inositol 1,4,5-trisphosphate (IP(3)) production without affecting the peak level of IP(3), but rather increased the steady-state level of IP(3) at all agonist concentrations. The increased steady-state level of IP(3) led to an increased frequency of [Ca(2+)](i) oscillations. The cells were adapted to deletion of RGS2 by reducing Ca(2+) signaling excitability. Reduced excitability was achieved by adaptation of all transporters to reduce Ca(2+) influx into the cytosol. Thus, IP(3) receptor 1 was down-regulated and IP(3) receptor 3 was up-regulated in RGS2(-/-) cells to reduce the sensitivity for IP(3) to release Ca(2+) from the endoplasmic reticulum to the cytosol. Sarco/endoplasmic reticulum Ca(2+) ATPase 2b was up-regulated to more rapidly remove Ca(2+) from the cytosol of RGS2(-/-) cells. Agonist-stimulated Ca(2+) influx was reduced, and Ca(2+) efflux by plasma membrane Ca(2+) was up-regulated in RGS2(-/-) cells. The result of these adaptive mechanisms was the reduced excitability of Ca(2+) signaling, as reflected by the markedly reduced response of RGS2(-/-) cells to changes in the endoplasmic reticulum Ca(2+) load and to an increase in extracellular Ca(2+). These findings highlight the central role of RGS proteins in [Ca(2+)](i) oscillations and reveal a prominent plasticity and adaptability of the Ca(2+) signaling apparatus.  相似文献   

9.
Muallem S  Wilkie TM 《Cell calcium》1999,26(5):173-180
Polarized cells signal in a polarized manner. This is exemplified in the patterns of [Ca2+]i waves and [Ca2+]i oscillations evoked by stimulation of G protein-coupled receptors in these cells. Organization of Ca(2+)-signaling complexes in cellular microdomains, with the aid of scaffolding proteins, is likely to have a major role in shaping G protein-coupled [Ca2+]i signal pathways. In epithelial cells, these domains coincide with sites of [Ca2+]i-wave initiation and local [Ca2+]i oscillations. Cellular microdomains enriched with Ca(2+)-signaling proteins have been found in several cell types. Microdomains organize communication between Ca(2+)-signaling proteins in the plasma membrane and internal Ca2+ stores in the endoplasmic reticulum through the interaction between the IP3 receptors in the endoplasmic reticulum and Ca(2+)-influx channels in the plasma membrane. Ca2+ signaling appears to be controlled within the receptor complex by the regulators of G protein-signaling (RGS) proteins. Three domains in RGS4 and related RGS proteins contribute important regulatory features. The RGS domain accelerates GTP hydrolysis on the G alpha subunit to uncouple receptor stimulation from IP3 production; the C-terminus may mediate interaction with accessory proteins in the complex; and the N-terminus acts in a receptor-selective manner to confer regulatory specificity. Hence, RGS proteins have both catalytic and scaffolding function in Ca2+ signaling. Organization of Ca(2+)-signaling proteins into complexes within microdomains is likely to play a prominent role in the localized control of [Ca2+]i and in [Ca2+]i oscillations.  相似文献   

10.
RGS5 is a member of regulators of G protein signaling (RGS) proteins that attenuate heterotrimeric G protein signaling by functioning as GTPase-activating proteins (GAPs). We investigated phosphorylation of RGS5 and the resulting change of its function. In 293T cells, transiently expressed RGS5 was phosphorylated by endogenous protein kinases in the basal state. The phosphorylation was enhanced by phorbol 12-myristate 13-acetate (PMA) and endothelin-1 (ET-1), and suppressed by protein kinase C (PKC) inhibitors, H7, calphostin C and staurosporine. These results suggest involvement of PKC in phosphorylation of RGS5. In in vitro experiments, PKC phosphorylated recombinant RGS5 protein at serine residues. RGS5 protein phosphorylated by PKC showed much lower binding capacity for and GAP activity toward Galpha subunits than did the unphosphorylated RGS5. In cells expressing RGS5, the inhibitory effect of RGS5 on ET-1-induced Ca(2+) responses was enhanced by staurosporine. Mass spectrometric analysis of the phosphorylated RGS5 revealed that Ser166 was one of the predominant phosphorylation sites. Substitution of Ser166 by aspartic acid abolished the binding capacity to Galpha subunits and the GAP activity, and markedly reduced the inhibitory effect on ET-1-induced Ca(2+) responses. These results indicate that phosphorylation at Ser166 of RGS5 by PKC causes loss of the function of RGS5 in G protein signaling. Since this serine residue is conserved in RGS domains of many RGS proteins, the phosphorylation at Ser166 by PKC might act as a molecular switch and have functional significance.  相似文献   

11.
G protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca(2+) imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Galpha subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation.  相似文献   

12.
Homers are scaffolding proteins that bind Ca(2+) signaling proteins in cellular microdomains. The Homers participate in targeting and localization of Ca(2+) signaling proteins in signaling complexes. However, recent work showed that the Homers are not passive scaffolding proteins, but rather they regulate the activity of several proteins within the Ca(2+) signaling complex in an isoform-specific manner. Homer2 increases the GAP activity of RGS proteins and PLCbeta that accelerate the GTPase activity of Galpha subunits. Homer1 gates the activity of TRPC channels, controls the rates of their translocation and retrieval from the plasma membrane and mediates the conformational coupling between TRPC channels and IP(3)Rs. Homer1 stimulates the activity of the cardiac and neuronal L-type Ca(2+) channels Ca(v)1.2 and Ca(v)1.3. Homer1 also mediates the communication between the cardiac and smooth muscle ryanodine receptor RyR2 and Ca(v)1.2 to regulate E-C coupling. In many cases the Homers function as a buffer to reduce the intensity of Ca(2+) signaling and create a negative bias that can be reversed by the immediate early gene form of Homer1. Hence, the Homers should be viewed as the buffers of Ca(2+) signaling that ensure a high spatial and temporal fidelity of the Ca(2+) signaling and activation of downstream effects.  相似文献   

13.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits and negatively regulate G protein-mediated signal transduction. In this study, we determined the cDNA sequence of a novel Caenorhabditis elegans (C. elegans) RGS protein. The predicted protein, termed C2-RGS, consists of 782 amino acids, and contains a C2 domain and an RGS domain. C2 domains are typically known to be Ca(2+) and phospholipid binding sites, found in many proteins involved in membrane traffic or signal transduction, and most of their biological roles are not identified. To study the function of C2-RGS protein, a series of six truncated versions of C2-RGS were constructed. When the full-length protein of C2-RGS was expressed transiently in AT1a-293T cells, ET-1-induced Ca(2+) responses were strongly suppressed. When each of the mutants with either RGS domain or C2 domain was expressed, the Ca(2+) responses were suppressed moderately. Furthermore, we found that C2 domain of PLC-beta1 also had a similar moderate inhibitory effect. RGS domain of C2-RGS bound to mammalian and C. elegans Galphai/o and Galphaq subunits only in the presence of GDP/AlF(4)(-), and had GAP activity to Galphai3. On the other hand, C2 domains of C2-RGS and PLC-beta1 also bound strongly to Galphaq subunit, in the presence of GDP, GDP/AlF(4)(-), and GTPgammaS, suggesting the stable persistent association between these C2 domains and Galphaq subunit at any stage during GTPase cycle. These results indicate that both the RGS domain and the C2 domain are responsible for the inhibitory effect of the full-length C2-RGS protein on Galphaq-mediated signaling, and suggest that C2 domains of C2-RGS and PLC-beta1 may act as a scaffold module to organize Galphaq and the respective whole protein molecule in a stable signaling complex, both in the absence and presence of stimulus.  相似文献   

14.
RGS2, a GTPase-activating protein (GAP) for G(q)alpha, regulates vascular relaxation and blood pressure. RGS2 can be phosphorylated by type Ialpha cGMP-dependent protein kinase (cGKIalpha), increasing its GAP activity. To understand how RGS2 and cGKIalpha regulate vascular smooth muscle signaling and function, we identified signaling pathways that are controlled by cGMP in an RGS2-dependent manner and discovered new mechanisms whereby cGK activity regulates RGS2. We show that RGS2 regulates vasoconstrictor-stimulated Ca(2+) store release, capacitative Ca(2+) entry, and noncapacitative Ca(2+) entry and that RGS2 is required for cGMP-mediated inhibition of vasoconstrictor-elicited phospholipase Cbeta activation, Ca(2+) store release, and capacitative Ca(2+) entry. RGS2 is degraded in vascular smooth muscle cells via the proteasome. Inhibition of cGK activity blunts RGS2 degradation. However, inactivation of the cGKIalpha phosphorylation sites in RGS2 does not stabilize the protein, suggesting that cGK activity regulates RGS2 degradation by other mechanisms. cGK activation promotes association of RGS2 with the plasma membrane by a mechanism requiring its cGKIalpha phosphorylation sites. By regulating GAP activity, plasma membrane association, and degradation, cGKIalpha therefore may control a cycle of RGS2 activation and inactivation. By diminishing cGK activity, endothelial dysfunction may impair RGS2 activation, thereby blunting vascular relaxation and contributing to hypertension.  相似文献   

15.
Regulators of G protein signaling (RGS proteins) interact with Galpha(q) and Galpha(i) and accelerate GTPase activity. These proteins have been characterized only within the past few years, so our understanding of their importance is still preliminary. We examined the effect of oxytocin on RGS2 mRNA expression to help determine the role of RGS proteins in oxytocin signaling in human myometrial cells in primary culture. Oxytocin increased RGS2 mRNA concentration maximally by 1 or 2 h in a dose-dependent and agonist-specific manner. RGS2 mRNA levels were also elevated by treatment with Ca(2+) ionophore, phorbol ester, or forskolin. Oxytocin's effects were completely inhibited by an intracellular Ca(2+) chelator and partially blocked by a protein kinase C inhibitor, indicating that intracellular Ca(2+) concentration is the primary signal for oxytocin elevation of RGS2 mRNA levels. Use of pharmacological inhibitors indicated that part of oxytocin-stimulated RGS2 mRNA expression is mediated by G(i)/tyrosine kinase activities. Although oxytocin does not stimulate increases in intracellular cAMP concentration, agents that elevate intracellular cAMP concentrations and cause myometrial relaxation may possibly cause heterologous desensitization to oxytocin via RGS2 expression. These results suggest that RGS2 may be important in regulating the myometrial response to oxytocin.  相似文献   

16.
Regulators of G-protein signaling (RGS) proteins act directly on Galpha subunits to increase the rate of GTP hydrolysis and to terminate signaling. However, the mechanisms involved in determining their specificities of action in cells remain unclear. Recent evidence has raised the possibility that RGS proteins may interact directly with G-protein-coupled receptors to modulate their activity. By using biochemical, fluorescent imaging, and functional approaches, we found that RGS2 binds directly and selectively to the third intracellular loop of the alpha1A-adrenergic receptor (AR) in vitro, and is recruited by the unstimulated alpha1A-AR to the plasma membrane in cells to inhibit receptor and Gq/11 signaling. This interaction was specific, because RGS2 did not interact with the highly homologous alpha1B- or alpha1D-ARs, and the closely related RGS16 did not interact with any alpha1-ARs. The N terminus of RGS2 was required for association with alpha1A-ARs and inhibition of signaling, and amino acids Lys219, Ser220, and Arg238 within the alpha1A-AR i3 loop were found to be essential for this interaction. These findings demonstrate that certain RGS proteins can directly interact with preferred G-protein-coupled receptors to modulate their signaling with a high degree of specificity.  相似文献   

17.
Ligand binding studies reveal information about affinity to G protein-coupled receptors (GPCRs) rather than functional properties. Increase in intracellular Ca(2+) appears to represent a universal second messenger signal for a majority of recombinant GPCRs. Here, we exploit Ca(2+) signaling as a fast and sensitive functional screening method for a number of GPCRs coupled to different G proteins. Ca(2+) fluorescence measurements are performed using Oregon Green 488 BAPTA-1/AM and a microplate reader equipped with an injector. Buffer alone or test compounds dissolved in buffer are injected into a cell suspension, and fluorescence intensity is recorded for 30 s. Each of the GPCRs tested--G(q)-coupled P2Y(2), G(s)-coupled dopamine D1 and D5, G(i)-coupled dopamine D2L, and G(q/11)-coupled muscarinic acetylcholine M1--yielded a significant rise in intracellular free [Ca(2+)] on agonist stimulation. Agonist stimulation was dose dependent, as shown for ATP or UTP stimulation of P2Y(2) receptors (EC(50) = 1 microM), SKF38393 stimulation of hD1 and hD5 (EC(50) = 18.1 nM and 2.7 nM), and quinpirole at hD2L (EC(50) = 6.5 nM). SCH23390 (at hD1 and hD5) and spiperone, haloperidol, and clozapine (at hD2L) competitively antagonized the Ca(2+) response. Furthermore, the Ca(2+) assay served to screen suramin analogs for antagonistic activity at P2Y(2) receptors. Screening at dopamine receptors revealed LE300, a new lead for a dopamine receptor antagonist. Advantages of the assay include fast and simple 96- or 384-well plate format (high-throughput screening), use of a visible light-excitable fluorescent dye, applicability to a majority of GPCRs, and simultaneous analysis of distinct Ca(2+) fluxes.  相似文献   

18.
Regulator of G protein signaling (RGS) proteins counter the effects of G protein-coupled receptors (GPCRs) by limiting the abilities of G proteins to propagate signals, although little is known concerning their role in cardiac pathophysiology. We investigated the potential role of RGS proteins on alpha1-adrenergic receptor signals associated with hypertrophy in primary cultures of neonatal rat cardiomyocytes. Levels of mRNA encoding RGS proteins 1-5 were examined, and the alpha1-adrenergic agonist phenylephrine (PE) significantly increased RGS2 gene expression but had little or no effect on the others. The greatest changes in RGS2 mRNA occurred within the first hour of agonist addition. We next investigated the effects of RGS2 overexpression produced by infecting cells with an adenovirus encoding RGS2-cDNA on cardiomyocyte responses to PE. As expected, PE increased cardiomyocyte size and also significantly upregulated alpha-skeletal actin and ANP expression, the markers of hypertrophy, as well as the Na-H exchanger 1 isoform. These effects were blocked in cells infected with the adenovirus expressing RGS2. We also examined hypertrophy-associated MAP kinase pathways, and RGS2 overexpression completely prevented the activation of ERK by PE. In contrast, the activation of both JNK and p38 unexpectedly were increased by RGS2, although the ability of PE to further activate the p38 pathway was reduced. These results indicate that RGS2 is an important negative-regulatory factor in cardiac hypertrophy produced by alpha1-adrenergic receptor stimulation through complex mechanisms involving the modulation of mitogen-activated protein kinase signaling pathways.  相似文献   

19.
20.
Conserved structural motifs on pathogens trigger pattern recognition receptors present on APCs such as dendritic cells (DCs). An important class of such receptors is the Toll-like receptors (TLRs). TLR signaling triggers a cascade of events in DCs that includes modified chemokine and cytokine production, altered chemokine receptor expression, and changes in signaling through G protein-coupled receptors (GPCRs). One mechanism by which TLR signaling could modify GPCR signaling is by altering the expression of regulator of G protein signaling (RGS) proteins. In this study, we show that human monocyte-derived DCs constitutively express significant amounts of RGS2, RGS10, RGS14, RGS18, and RGS19, and much lower levels of RGS3 and RGS13. Engagement of TLR3 or TLR4 on monocyte-derived DCs induces RGS16 and RGS20, markedly increases RGS1 expression, and potently down-regulates RGS18 and RGS14 without modifying other RGS proteins. A similar pattern of Rgs protein expression occurred in immature bone marrow-derived mouse DCs stimulated to mature via TLR4 signaling. The changes in RGS18 and RGS1 expression are likely important for DC function, because both proteins inhibit G alpha(i)- and G alpha(q)-mediated signaling and can reduce CXC chemokine ligand (CXCL)12-, CC chemokine ligand (CCL)19-, or CCL21-induced cell migration. Providing additional evidence, bone marrow-derived DCs from Rgs1(-/-) mice have a heightened migratory response to both CXCL12 and CCL19 when compared with similar DCs prepared from wild-type mice. These results indicate that the level and functional status of RGS proteins in DCs significantly impact their response to GPCR ligands such as chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号