首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protective antigen (PA) is a central virulence factor of Bacillus anthracis and a key component in anthrax vaccines. PA binds to target cell receptors, is cleaved by the furin protease, self-aggregates to heptamers, and finally internalizes as a complex with either lethal or edema factors. Under mild room temperature storage conditions, PA cytotoxicity decreased (t(1/2) approximately 7 days) concomitant with the generation of new acidic isoforms, probably through deamidation of Asn residues. Ranking all 68 Asn residues in PA based on their predicted deamidation rates revealed five residues with half-lives of <60 days, and these residues were further analyzed: Asn10 in the 20-kDa region, Asn162 at P6 vicinal to the furin cleavage site, Asn306 in the pro-pore translocation loop, and both Asn713 and Asn719 in the receptor-binding domain. We found that PA underwent spontaneous deamidation at Asn162 upon storage concomitant with decreased susceptibility to furin. A panel of model synthetic furin substrates was used to demonstrate that Asn162 deamidation led to a 20-fold decrease in the bimolecular rate constant (k(cat)/Km) of proteolysis due to the new negatively charged residue at P6 in the furin recognition sequence. Furthermore, reduced PA cytotoxicity correlated with a decrease in PA cell binding and also with deamidation of Asn713 and Asn719. On the other hand, neither deamidation of Asn10 or Asn306 nor impairment of heptamerization could be observed upon prolonged PA storage. We suggest that PA inactivation during storage is associated with susceptible deamidation sites, which are intimately involved in both mechanisms of PA cleavage by furin and PA-receptor binding.  相似文献   

2.
重组炭疽保护性抗原的表达、纯化与生物活性分析   总被引:14,自引:1,他引:14  
构建分泌型表达质粒 ,在大肠杆菌中实现了重组炭疽保护性抗原 (rPA)的分泌型表达。重组蛋白位于细菌外周质 ,表达量约占菌体总蛋白的 10 %。以离子交换、疏水层析和凝胶过滤为基础 ,建立了rPA的纯化工艺 ,每升培养物可获得约 15mgrPA ,纯度可达 95 %以上。体外细胞毒性试验显示rPA具有较好的生物学活性。用rPA免疫家兔产生的抗血清在体外可抑制炭疽致死毒素的活性 ,表明rPA可诱导机体产生保护性免疫。以上结果为今后发展新一代炭疽疫苗打下基础  相似文献   

3.
Antibodies against the protective antigen (PA) of Bacillus anthracis play a key role in response to infection by this important pathogen. The aim of this study was to produce and characterize monoclonal antibodies (mAbs) specific for PA and to identify novel neutralizing epitopes. Three murine mAbs with high specificity and nanomolar affinity for B. anthracis recombinant protective antigen (rPA) were produced and characterized. Western immunoblot analysis, coupled with epitope mapping using overlapping synthetic peptides, revealed that these mAbs recognize a linear epitope within domain 2 of rPA. Neutralization assays demonstrate that these mAbs effectively neutralize lethal toxin in vitro.  相似文献   

4.
Cyclodextrin glycosyltransferase (CGTase) from Paenibacillus sp. RB01 and its recombinant enzyme exhibit three isoforms (I, II, and III) with the same apparent size but different charge. Here, we demonstrate for the first time that the deamidation of labile Asns causes the change in molecular forms of CGTase. The faster increase in number of isoforms was observed upon incubation in deamidation buffer at the more alkaline pH. The increase in levels of isoform II and III over time correlated with the increase in isoaspartate, a unique deamidation product. The predicted labile Asns were individually mutated to Asp, then the selected mutant and wild type isoforms were tryptic digested and labile Asns were investigated by MALDI-TOF. From the results, Asn427 was the most susceptible residue for deamidation, followed by Asn336, Asn415, and Asn567. In addition, Gln389 might also share a role. The advantage of using appropriate CGTase isoform in cyclodextrin production is reported.  相似文献   

5.
A kind of degradation characterized by an increase in overall negative charge in both native polyacrylamide gel electrophoresis analysis and high-performance strong anion exchange analysis was observed during the purification process of recombinant human tumor necrosis factor-α (TNF-α). Liquid chromatography coupled with tandem mass spectrometry was adopted to further analyze this degradation, and the result demonstrated that suspected deamidation occurred at N39 and N34 residues. To investigate the effects of these deamidation degradations on TNF-α, we substituted corresponding asparagine residues with aspartic acid residues. High-performance size-exclusion chromatography, circular dichroism, and fluorescence spectrometry analysis revealed that the advanced structures of TNF-α could not be obviously changed by these substitutions. Differential scanning calorimetry analysis indicated that deamidation led to decreased thermal stability, and two mutants (N34D, N34DN39D) both possessed two Tm. L929 cell cytotoxic activity implied that N39 residue deamidation caused only a minor bioactivity loss, whereas N34 residue deamidation led to a bioactivity loss of four orders of magnitude. To alleviate the degradation during the purification process, we screened nine excipients and found that glycerol could notably ameliorate this degradation and provide a compromise strategy for the recombinant human TNF-α protein during purification process and formulation development.  相似文献   

6.
The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.  相似文献   

7.
The nonenzymatic rates of deamidation of Asn residues in a series of pentapeptides with the sequences VSNXV and VXNSV, where X is one of 10 different amino acids, were determined at neutral, alkaline, and acid pH values. The results demonstrate that in neutral and alkaline solutions the amino acid residue on the amino side of the Asn had little or no effect on the rate of deamidation regardless of its charge or size. The group on the carboxyl side of Asn affected the rate of deamidation significantly. Increasing size and branching in the side chain of this residue decreased the rate of deamidation by as much as 70-fold compared to glycine in the N-G sequence, which had the greatest rate of deamidation. In acidic solution, the rate of deamidation of the Asn residue was not affected by the amino acid sequence of the peptide. The products for each deamidation reaction were tested for the formation of isoAsp residues. In neutral and alkaline solutions, all products showed that the isoAsp:Asp peptide products were formed in about a 3:1 ratio. In acidic solution, the Asp peptide was the only deamidation product formed. All peptides in which a Ser residue follows the Asn residue were found to undergo a peptide cleavage reaction in neutral and alkaline solutions, yielding a tripeptide and a dipeptide. The rate of the cleavage reaction was about 10% of the rate of the deamidation pathway at neutral and alkaline pH values. The rates of deamidation of Asn residues in the peptides studied were not affected by ionic strength, and were not specific base catalyzed. General base catalysis was observed for small bases like ammonia. A model for the deamidation reaction is proposed to account for the observed effects.  相似文献   

8.
The rates of deamidation of Asn and Gln residues in peptides and proteins depend upon both the identity of other nearby amino acid residues, some of which can catalyze the deamidation reaction of the Asn and Gln side chains, and upon polypeptide conformation. Proximal amino acids can be contiguous in sequence or brought close to Asn or Gln side chains by higher order structure of the protein. Local polypeptide conformation can stabilize the oxyanion transition state of the deamidation reaction and also enable deamidation through the beta-aspartyl shift mechanism. In this paper, the environments of Asn and Gln residues in known protein structures are examined to determine the configuration and identity of groups which participate in deamidation reactions. Sequence information is also analyzed and shown to support evolutionary selection against the occurrence of certain potentially catalytic amino acids adjacent to Asn and Gln in proteins. This negative selection supports a functional role for deamidation in those non-mutant proteins in which it occurs.  相似文献   

9.
The rates of deamidation of α-synuclein and single Asn residues in 13 Asn-sequence mutants have been measured for 5 × 10−5M protein in both the absence and presence of 10−2M sodium dodecyl sulfate (SDS). In the course of these experiments, 370 quantitative protein deamidation measurements were performed and 37 deamidation rates were determined by ion cyclotron resonance Fourier transform mass spectrometry, using an improved whole protein isotopic envelope method and a mass defect method with both enzymatic and collision-induced fragmentation. The measured deamidation index of α-synuclein was found to be 0.23 for an overall deamidation half-time of 23 days, without or with SDS micelles, owing primarily to the deamidation of Asn(103) and Asn(122). Deamidation rates of 15 Asn residues in the wild-type and mutant proteins were found to be primary sequence controlled without SDS. However, the presence of SDS micelles slowed the deamidation rates of nine N-terminal region Asn residues, caused by the known three-dimensional structures induced through protein binding to SDS micelles.  相似文献   

10.
A mutant (D165N) of clostridial glutamate dehydrogenase (GDH) in which the catalytic Asp is replaced by Asn surprisingly showed a residual 2% of wild-type activity when purified after expression in Escherichia coli at 37 degrees C. This low-level activity also displayed Michaelis constants for substrates that were remarkably similar to those of the wild-type enzyme. Expression at 8 degrees C gave a mutant enzyme preparation 1000 times less active than the first preparation, but progressively, over 2 weeks' incubation at 37 degrees C in sealed vials, this enzyme regained 90% of the specific activity of wild type. This suggested that the mutant might undergo spontaneous deamidation. Mass spectrometric analysis of tryptic peptides derived from D165N samples treated in various ways showed (i) that the Asn is in place in D165N GDH freshly prepared at 8 degrees C; (ii) that there is a time-dependent reversion of this Asn to Asp over the 2-week incubation period; (iii) that detectable deamidation of other Asn residues, in Asn-Gly sequences, mainly occurred in sample workup rather than during the 2-week incubation; (iv) that there is no significant deamidation of other randomly chosen Asn residues in this mutant over the same period; and (v) that when the protein is denatured before incubation, no deamidation at Asn-165 is detectable. It appears that this deamidation depends on the residual catalytic machinery of the mutated GDH active site. A literature search indicates that this finding is not unique and that Asn may not be a suitable mutational replacement in the assessment of putative catalytic Asp residues by site-directed mutagenesis.  相似文献   

11.
Oxidation of methionine residues and deamidation of asparagine residues are the major causes of chemical degradation of biological pharmaceuticals. The mechanism of these non-enzymatic chemical reactions has been studied in great detail. However, the identification and quantification of oxidation and deamidation sites in a given protein still remains a challenge. In this study, we identified and characterized several oxidation and deamidation sites in a rat/mouse hybrid antibody. We evaluated the effects of the sample preparation on oxidation and deamidation levels and optimized the peptide mapping method to minimize oxidation and deamidation artifacts. Out of a total number of 18 methionine residues, we identified six methionine residues most susceptible to oxidation. We determined the oxidation rate of the six methionine residues using 0.05% H2O2 at different temperatures. Methionine residue 256 of the mouse heavy chain showed the fastest rate of oxidation under those conditions with a half life of approximately 200 min at 4 °C and 27 min at 37 °C. We identified five asparagine residues prone to deamidation under accelerated conditions of pH 8.6 at 37 °C. Kinetic characterization of the deamidation sites showed that asparagine residue 218 of the rat heavy chain exhibited the fastest rate of deamidation with a half live of 1.5 days at pH 8.6 and 37 °C. Analysis of antibody isoforms using free flow electrophoresis showed that deamidation is the major cause of the charged variants of this rat/mouse hybrid antibody.  相似文献   

12.
Human aging is associated with the deterioration of long-lived proteins. Gradual cumulative modifications to the life-long proteins of the lens may ultimately be responsible for the pronounced alterations to the optical and physical properties that characterize lenses from older people. γS crystallin, a major human lens protein, is known to undergo several age-dependent changes. Using proteomic techniques, a site of deamidation involving glutamine 92 has been characterized and its time course established. The proportion of deamidation increased from birth to teen-age years and then plateaud. Deamidation at this site increased again in the eighth decade of life. There was no significant difference in the extent of deamidation between cataract and age-matched normal lenses. Gln92 is located in the linker region between the two domains, and the introduction of a negative charge at this site may alter the interaction between the two regions of the protein. Gln170, which is located in another unstructured part of γS crystallin, showed a similar deamidation profile to that of Gln92. As the other Gln residues in β-sheet regions of γS crystallin appear to remain as amides, modification of Gln92 and Gln170 thus conforms to a pattern whereby deamidation is localized to the unstructured regions of long-lived proteins.  相似文献   

13.
Merrifield solid phase peptide synthesis has been the principle research procedure used in the study of the chemistry and biological use of deamidation of asparaginyl and glutaminyl residues in peptides and proteins during the past 40 years. During the initial years of investigation, it permitted the qualitative demonstration that primary, secondary, and tertiary structure-determined deamidation half-times vary over a wide range under biological conditions and the discovery of two biological systems in which deamidations serve as molecular clocks. More recently, it has made possible such a thorough quantitative understanding of the structural dependence of deamidation that the deamidation rates of asparaginyl residues in proteins can be predicted from protein three-dimensional structures with a high degree of reliability. This, in turn, has led to the discovery that amide residues serve as molecular clocks in many biological systems and the demonstration of additional examples. In these investigations, Professor R. B. Merrifield contributed his techniques, time, and laboratory resources, both in personally teaching his methods to the principle investigators and in making available his laboratory in which more than 900 peptides were synthesized for this work.  相似文献   

14.
Effect of protein conformation on rate of deamidation: ribonuclease A   总被引:4,自引:0,他引:4  
The effect of the folded conformation of a protein on the rate of deamidation of a specific asparaginyl residue has been determined. Native and unfolded ribonuclease A (RNase A) could be compared under identical conditions, because stable unfolded protein was generated by breaking irreversibly the protein disulfide bonds. Deamidation of the labile Asn-67 residue of RNase A was followed electrophoretically and chromatographically. At 80 degrees C, similar rates of deamidation were observed for the disulfide-bonded form, which is thermally unfolded, and the reduced form. At 37 degrees C and pH 8, however, the rate of deamidation of native RNase A was negligible, and was more than 30-fold slower than that of reduced, unfolded RNase A. This demonstrates that the Asn-67 residue is located in a local conformation in the native protein that greatly inhibits deamidation. This conformation is the beta-turn of residues 66-68.  相似文献   

15.
We study the structural fluctuations of triosephosphate isomerase (TIM) by an elastic model, namely, the Gaussian network model (GNM), to identify a network of coupled motions in the allosteric communication between its deamidation and catalytic sites, and the promoting motions for the deamidation activity. For this, three TIM structures have been studied: one crystal structure and two model structures designed to describe different putative models for the deamidation reaction taking place at the subunit interface. The structural fluctuations have been mapped on the functional properties; then the differences in the fluctuations between the two models in relation to the deamidation reaction have been considered. The results demonstrate that the qualitative picture of the mean-square fluctuations and the correlations between the fluctuations are similar in both, but the differences may affect the observed barrier height of the deamidation reaction. The higher packing density at regions close to deamidation sites, reflected by the high-frequency fluctuating residues in the respective regions, the stronger positive correlation between the fluctuations of the deamidation sites, and enhanced positive correlation of the primary deamidation site with the extended vicinity of the catalytic region on the juxtaposed unit promote the probability of the deamidation reaction. The results in general emphasize the importance of structural fluctuations in enzyme reactions, as well as proposing the present methodology as a plausible approach for studies on the network of coupled promoting motions in protein functions.  相似文献   

16.
17.
Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM), an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D) were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.  相似文献   

18.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

19.
Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.  相似文献   

20.
Transglutaminase 2 (TG2) catalyzes cross-linking or deamidation of glutamine residues in peptides and proteins. The in vivo deamidation of gliadin peptides plays an important role in the immunopathogenesis of celiac disease (CD). Although deamidation is considered to be a side-reaction occurring in the absence of suitable amines or at a low pH, a recent paper reported the selective deamidation of the small heat shock protein 20 (Hsp20), suggesting that deamidation could be a substrate dependent event. Here we have measured peptide deamidation and transamidation in the same reaction to reveal factors that affect the relative propensity for the two possible products. We report that the propensity for deamidation by TG2 is both substrate dependent and influenced by the reaction conditions. Direct deamidation is favored for poor substrates and at low concentrations of active TG2, while indirect deamidation (i.e. hydrolysis of transamidated product) can significantly contribute to the deamidation of good peptide substrates at higher enzyme concentrations. Further, we report for the first time that TG2 can hydrolyze iso-peptide bonds between two peptide substrates. This was observed also for gliadin peptides introducing a novel route for the generation of deamidated T cell epitopes in celiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号