首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Activation of interleukin-1 (IL-1) receptor (IL-1R), Toll-like receptor 2 (TLR2), and TLR4 triggers NF-kappaB and mitogen-activated protein kinase (MAPK)-dependent signaling, thereby initiating immune responses. Tollip has been implicated as a negative regulator of NF-kappaB signaling triggered by these receptors in in vitro studies. Here, deficient mice were used to determine the physiological contribution of Tollip to immunity. NF-kappaB, as well as MAPK, signaling appeared normal in Tollip-deficient cells stimulated with IL-1beta or the TLR4 ligand lipopolysaccharide (LPS). Similarly, IL-1beta- and TLR-driven activation of dendritic cells and lymphocytes was indistinguishable from wild-type cells. In contrast, the production of the proinflammatory cytokines, IL-6 and tumor necrosis factor alpha was significantly reduced after IL-1beta and LPS treatment at low doses but not at lethal doses of LPS. Tollip therefore controls the magnitude of inflammatory cytokine production in response to IL-1beta and LPS.  相似文献   

3.
Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130(F/F) knock-in mutant mice displaying hyperactivated IL-6-dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130(F/F) mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130(F/F) mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130(F/F):Stat3(+/-) mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130(F/F) mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.  相似文献   

4.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

5.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

6.
The remarkable resistance of the urinary tract to infection has been attributed to its physical properties and the innate immune responses triggered by pattern recognition receptors lining the tract. We report a distinct TLR4 mediated mechanism in bladder epithelial cells (BECs) that abrogates bacterial invasion, a necessary step for successful infection. Compared to controls, uropathogenic type 1 fimbriated Escherichia coli and Klebsiella pneumoniae invaded BECs of TLR4 mutant mice in 10-fold or greater numbers. TLR4 mediated suppression of bacterial invasion was linked to increased intracellular cAMP levels which negatively impacted Rac-1 mediated mobilization of the cytoskeleton. Artificially increasing intracellular cAMP levels in BECs of TLR4 mutant mice restored resistance to type 1 fimbriated bacterial invasion. This finding reveals a novel function for TLR4 and another facet of bladder innate defense.  相似文献   

7.
Blockade of excessive Toll-like receptor (TLR) signaling is a therapeutic approach being actively pursued for many inflammatory diseases. Here we report a Chinese herb-derived compound, sparstolonin B (SsnB), which selectively blocks TLR2- and TLR4-mediated inflammatory signaling. SsnB was isolated from a Chinese herb, Spaganium stoloniferum; its structure was determined by NMR spectroscopy and x-ray crystallography. SsnB effectively inhibited inflammatory cytokine expression in mouse macrophages induced by lipopolysaccharide (LPS, a TLR4 ligand), Pam3CSK4 (a TLR1/TLR2 ligand), and Fsl-1 (a TLR2/TLR6 ligand) but not that by poly(I:C) (a TLR3 ligand) or ODN1668 (a TLR9 ligand). It suppressed LPS-induced cytokine secretion from macrophages and diminished phosphorylation of Erk1/2, p38a, IκBα, and JNK in these cells. In THP-1 cells expressing a chimeric receptor CD4-TLR4, which triggers constitutive NF-κB activation, SsnB effectively blunted the NF-κB activity. Co-immunoprecipitation showed that SsnB reduced the association of MyD88 with TLR4 and TLR2, but not that with TLR9, in HEK293T cells and THP-1 cells overexpressing MyD88 and TLRs. Furthermore, administration of SsnB suppressed splenocyte inflammatory cytokine expression in mice challenged with LPS. These results demonstrate that SsnB acts as a selective TLR2 and TLR4 antagonist by blocking the early intracellular events in the TLR2 and TLR4 signaling. Thus, SssB may serve as a promising lead for the development of selective TLR antagonistic agents for inflammatory diseases.  相似文献   

8.
9.
The lumenal surface of the colonic epithelium is continually exposed to Gram-negative commensal bacteria and LPS. Recognition of LPS by Toll-like receptor (TLR)-4 results in proinflammatory gene expression in diverse cell types. Normally, however, commensal bacteria and their components do not elicit an inflammatory response from intestinal epithelial cells (IEC). The aim of this study is to understand the molecular mechanisms by which IEC limit chronic activation in the presence of LPS. Three IEC lines (Caco-2, T84, HT-29) were tested for their ability to activate an NF-kappaB reporter gene in response to purified, protein-free LPS. No IEC line responded to LPS, whereas human dermal microvessel endothelial cells (HMEC) did respond to LPS. IEC responded vigorously to IL-1beta in this assay, demonstrating that the IL-1 receptor signaling pathway shared by TLRs was intact. To determine the reason for LPS hyporesponsiveness in IEC, we examined the expression of TLR4 and MD-2, a critical coreceptor for TLR4 signaling. IEC expressed low levels of TLR4 compared with HMEC and none expressed MD-2. To determine whether the low level of TLR4 expression or absent MD-2 was responsible for the LPS signaling defect in IEC, the TLR4 or MD-2 gene was transiently expressed in IEC lines. Transient transfection of either gene individually was not sufficient to restore LPS signaling, but cotransfection of TLR4 and MD-2 in IEC led to synergistic activation of NF-kappaB and IL-8 reporter genes in response to LPS. We conclude that IEC limit dysregulated LPS signaling by down-regulating expression of MD-2 and TLR4. The remainder of the intracellular LPS signaling pathway is functionally intact.  相似文献   

10.
LPS, a molecule produced by Gram-negative bacteria, is known to activate both innate immune cells such as macrophages and adaptive immune B cells via TLR4 signaling. Although TLR4 is also expressed on T cells, LPS was observed not to affect T cell proliferation or cytokine secretion. We now report, however, that LPS can induce human T cells to adhere to fibronectin via TLR4 signaling. This response to LPS was confirmed in mouse T cells; functional TLR4 and MyD88 were required, but T cells from TLR2 knockout mice could respond to LPS. The human T cell response to LPS depended on protein kinase C signaling and involved the phosphorylation of the proline-rich tyrosine kinase (Pyk-2) and p38. LPS also up-regulated the T cell expression of suppressor of cytokine signaling 3, which led to inhibition of T cell chemotaxis toward the chemokine stromal cell-derived factor 1alpha (CXCL12). Thus, LPS, through TLR4 signaling, can affect T cell behavior in inflammation.  相似文献   

11.
Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases.  相似文献   

12.
13.
Toll-like receptors (TLRs) direct a proinflammatory program in macrophages. One mediator whose generation is induced by TLR ligation is prostaglandin E(2) (PGE(2)), which is well known to increase intracellular cAMP upon G protein-coupled receptor ligation. How PGE(2)/cAMP shapes the nascent TLR response and the mechanisms by which it acts remain poorly understood. Here we explored PGE(2)/cAMP regulation of NO production in primary rat alveolar macrophages stimulated with the TLR4 ligand LPS. Endogenous PGE(2) synthesis accounted for nearly half of the increment in NO production in response to LPS. The enhancing effect of PGE(2) on LPS-stimulated NO was mediated via cAMP, generated mainly upon ligation of the E prostanoid 2 receptor and acting via protein kinase A (PKA) rather than via the exchange protein activated by cAMP. Isoenzyme-selective cAMP agonists and peptide disruptors of protein kinase A anchoring proteins (AKAPs) implicated PKA regulatory subunit type I (RI) interacting with an AKAP in this process. Gene knockdown of potential RI-interacting AKAPs expressed in alveolar macrophages revealed that AKAP10 was required for PGE(2) potentiation of LPS-induced NO synthesis. AKAP10 also mediated PGE(2) potentiation of the expression of cytokines IL-10 and IL-6, whereas PGE(2) suppression of TNF-α was mediated by AKAP8-anchored PKA-RII. Our data illustrate the pleiotropic manner in which G protein-coupled receptor-derived cAMP signaling can influence TLR responses in primary macrophages and suggest that AKAP10 may coordinate increases in gene expression.  相似文献   

14.
15.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

16.
17.
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.  相似文献   

18.
Expression of many pro-inflammatory cytokines is controlled by the NF-κB signaling pathway. NF-κB is induced by LPS through activation of TLR4. Melanins extracted from fungal, plant and human sources modulate cytokine production and activate NF-κB pathway. We showed that a herbal melanin (HM) from Nigella sativa L. modulates cytokine production and suggested it as a ligand for TLR4. In this study we investigated the possibility that the HM-induced cytokine production is via an NF-κB signaling pathway. We found that HM induced the degradation of IκBα, a key step in the activation of NF-κB. Moreover, addition of IκB kinase (IKK) specific inhibitors effectively inhibited the observed HM-induced production of IL-8 and IL-6 by TLR4-transfected HEK293 cells and THP-1 cells. Our results have also shown that HM induced cleavage of caspase 8, and that this cleavage was partially abrogated by IKK inhibitors. We suggest that HM can modulate the inflammatory response by inducing IL-8 and IL-6 production via TLR4-dependent activation of the NF-κB signaling pathway.  相似文献   

19.
Activated astroglial cells are implicated in neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators and cytokines have been proposed to play a key role in glial cell-related brain damage. Cytokine production seems to be initiated by signaling through TLR4/type I IL-1R (IL-1RI) in response to their ligands, LPS and IL-1beta, playing vital roles in innate host defense against infections, inflammation, injury, and stress. We have shown that glial cells are stimulated by ethanol, up-regulating cytokines and inflammatory mediators associated with TLR4 and IL-1RI signaling pathways in brain, suggesting that ethanol may contribute to brain damage via inflammation. We explore the possibility that ethanol, in the absence of LPS or IL-1beta, triggers signaling pathways and inflammatory mediators through TLR4 and/or IL-1RI activation in astrocytes. We show in this study that ethanol, at physiologically relevant concentrations, is capable of inducing rapid phosphorylation within 10 min of IL-1R-associated kinase, ERK1/2, stress-activated protein kinase/JNK, and p38 MAPK in astrocytes. Then an activation of NF-kappaB and AP-1 occurs after 30 min of ethanol treatment along with an up-regulation of inducible NO synthase and cyclooxygenase-2 expression. Finally, we note an increase in cell death after 3 h of treatment. Furthermore, by using either anti-TLR4- or anti-IL-1RI-neutralizing Abs, before and during ethanol treatment, we inhibit ethanol-induced signaling events, including NF-kappaB and AP-1 activation, inducible NO synthase, and cyclooxygenase-2 up-regulation and astrocyte death. In summary, these findings indicate that both TLR4 and IL-1RI activation occur upon ethanol treatment, and suggest that signaling through these receptors mediates ethanol-induced inflammatory events in astrocytes and brain.  相似文献   

20.
Pyrogens are components derived from microorganisms that induce complex inflammatory responses. Current approaches to detect pyrogens are complex and difficult to replicate, thus there is a need for new methods to detect pyrogens. We successfully constructed a pyrogen-sensitive cell model by overexpressing Toll-like receptor (TLR)2, TLR4, MD2, and CD14 in HEK293 cells. Since the cytokine IL-6 is specifically released upon stimulation of the TLR2 and TLR4 signaling pathways in response to pyrogen stimulation, we used it as a read out for our assay. Our results show that IL-6 is released in response to trace amounts of pyrogens in our cell model. Pyrogen incubation times and concentrations were explored to determine the sensitivity of our cell model, and was found to be sensitive to 0.05 EU/ml of LPS and 0.05 ug/ml of LTA after stimulation for 5 hr. Our TLR overexpressing cell model, with IL-6 as readout, could be a new method for in vitro testing of pyrogens and applicable for evaluating the safety of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号