首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Records of Holstein cows from the Dairy Records Processing Center at Raleigh, NC were edited to obtain three data sets: 65,720 first, 50,694 second, and 65,445 later lactations. Correlations among yield traits and somatic cell score were estimated with three different models: 1) bovine somatotropin (bST) administration ignored, 2) bST administration as a fixed effect and 3) administration of bST as part of the contemporary group (herd-year-month-bST). Heritability estimates ranged from 0.13 to 0.17 for milk, 0.12 to 0.20 for fat, 0.14 to 0.16 for protein yields, and 0.08 to 0.09 for somatic cell score. Estimates were less for later than first lactations. Estimates of genetic correlations among yields ranged from 0.35 to 0.85 with no important differences between estimates with the 3 models. Estimates for lactation 2 agreed with estimates for lactation 1. Estimates of genetic correlations for later lactations were generally greater than for lactations 1 and 2 except between milk and protein yields. Estimates of genetic correlations between yields and somatic cell score were mostly negative or small (-0.45 to 0.11). Estimates of environmental correlations among yield traits were similar with all models (0.77 to 0.97). Estimates of environmental correlations between yields and somatic cell score were negative (-0.22 to -0.14). Estimates of phenotypic correlations among yield traits ranged from 0.70 to 0.95. Estimates of phenotypic correlations between yields and somatic cell score were small and negative. For all three data sets and all traits, no important differences in estimates of genetic parameters were found for the two models that adjusted for bST and the model that did not.  相似文献   

2.
中国荷斯坦牛CVM的基因检测及其与产奶性状的关联分析   总被引:1,自引:0,他引:1  
初芹  张毅  孙东晓  俞英  王雅春  张沅 《遗传》2010,32(7):732-736
脊椎畸形综合征(Complex vertebral malformation, CVM)是由位于牛第3号染色体(BTA3)的SLC35A3基因外显子4的一个单碱基突变(G559T)所致。该致病基因在世界许多国家的荷斯坦牛群中都有一定的比例。文章对北京地区38头优秀种公牛进行分析, 发现了4头携带者, 进而检测了这些携带者公牛的555头女儿的基因型, 其中携带者占检测母牛数的44.0%。此外, 关联分析结果表明, 携带者母牛与非携带者母牛的生产性能之间存在显著差异(P<0.01)。携带者母牛的5个产奶性状育种值均显著高于非携带者, 泌乳持续力和体细胞评分SCS的育种值也比非携带者略高。CVM致病基因可能与BTA3上影响产奶性状的QTL或基因连锁。因此, 建议生产中对CVM携带者进行逐步淘汰  相似文献   

3.
This study investigated the profile of locomotion score and lameness before the first calving and throughout the first (n=237) and second (n=66) lactation of 303 Holstein cows raised on a commercial farm. Weekly heritability estimates of locomotion score and lameness, and their genetic and phenotypic correlations with milk yield, body condition score, BW and reproduction traits were derived. Daughter future locomotion score and lameness predictions from their sires’ breeding values for conformation traits were also calculated. First-lactation cows were monitored weekly from 6 weeks before calving to the end of lactation. Second-lactation cows were monitored weekly throughout lactation. Cows were locomotion scored on a scale from one (sound) to five (severely lame); a score greater than or equal to two defined presence of lameness. Cows’ weekly body condition score and BW was also recorded. These records were matched to corresponding milk yield records, where the latter were 7-day averages on the week of inspection. The total number of repeated records amounted to 12 221. Data were also matched to the farm’s reproduction database, from which five traits were derived. Statistical analyses were based on uni- and bivariate random regression models. The profile analysis showed that locomotion and lameness problems in first lactation were fewer before and immediately after calving, and increased as lactation progressed. The profile of the two traits remained relatively constant across the second lactation. Highest heritability estimates were observed in the weeks before first calving (0.66 for locomotion score and 0.54 for lameness). Statistically significant genetic correlations were found for first lactation weekly locomotion score and lameness with body condition score, ranging from −0.31 to −0.65 and from −0.44 to −0.76, respectively, suggesting that cows genetically pre-disposed for high body condition score have fewer locomotion and lameness issues. Negative (favourable) phenotypic correlations between first lactation weekly locomotion score/lameness and milk yield averaged −0.27 and −0.17, respectively, and were attributed to management factors. Also a phenotypic correlation between lameness and conception rate of −0.19 indicated that lame cows were associated with lower success at conceiving. First-lactation daughter locomotion score and/or lameness predictions from sires’ estimated breeding values for conformation traits revealed a significant linear effect of rear leg side view, rear leg rear view, overall conformation, body condition score and locomotion, and a quadratic effect of foot angle.  相似文献   

4.
Taking into account functional traits in the breeding practice should lead to a longer productive life of cows. However, despite the increased contribution of these traits in bull selection indices, their daughters are frequently culled as early as the 2nd or 3rd lactation. The problem is whether and to what extent the genetic potential of animals is realized in the production practice. Therefore, the purpose of this study was to determine the associations between the breeding value (BV) of bulls and their daughters for cow longevity and culling reasons in the Holstein-Friesian cattle population in Poland. Data for 532 062 cows culled in 2012, 2015, and 2018 were analyzed. A majority of 5 045 cow sires originated from Poland, Germany, France, the Netherlands, and the United States. The highest variation in the contribution of culling reasons was for the cows culled at the age of 2–4 years. The contribution of the culling reasons, analyzed in relation to the cow culling age, remained similar and the only exception was culling because of old age, for which a significant increase was observed only for the culling age of at least 9 years (13.8%), which was reached by only 7.3% of the cows. The sires were characterized by generally high BV for conformation and reproductive traits. However, they had, at most, the average genetic potential for functional longevity. There were a number of beneficial associations found between the BV of bulls and the distribution of culling reasons in their daughters. For example, it concerns relations between the somatic cell score in milk and culling due to udder diseases and low milk yield, between the interval from calving to first insemination and low milk yield, between the protein yield and old age, or between the BV for certain conformation traits (size, udder) and cow culling due to age. In these cases, as the BV increased for a given trait, the contribution of the corresponding cow culling reason tended to decrease. Our study showed that it seems reasonable to consider Holstein-Friesian cows aged at least 9 years at culling to be long-living animals. This is primarily evidenced by the rapid increase in the culling due to old age in relation to younger cows. Nowadays the above age limit can be suggested as a criterion of longevity for Holstein-Friesian cows but the criterion should be updated to the relation genotype-environment-economy that tends to change over time.  相似文献   

5.
Estimated breeding values (EBVs) and genomic enhanced breeding values (GEBVs) for milk production of young genotyped Holstein bulls were predicted using a conventional BLUP – Animal Model, a method fitting regression coefficients for loci (RRBLUP), a method utilizing the realized genomic relationship matrix (GBLUP), by a single-step procedure (ssGBLUP) and by a one-step blending procedure. Information sources for prediction were the nation-wide database of domestic Czech production records in the first lactation combined with deregressed proofs (DRP) from Interbull files (August 2013) and domestic test-day (TD) records for the first three lactations. Data from 2627 genotyped bulls were used, of which 2189 were already proven under domestic conditions. Analyses were run that used Interbull values for genotyped bulls only or that used Interbull values for all available sires. Resultant predictions were compared with GEBV of 96 young foreign bulls evaluated abroad and whose proofs were from Interbull method GMACE (August 2013) on the Czech scale. Correlations of predictions with GMACE values of foreign bulls ranged from 0.33 to 0.75. Combining domestic data with Interbull EBVs improved prediction of both EBV and GEBV. Predictions by Animal Model (traditional EBV) using only domestic first lactation records and GMACE values were correlated by only 0.33. Combining the nation-wide domestic database with all available DRP for genotyped and un-genotyped sires from Interbull resulted in an EBV correlation of 0.60, compared with 0.47 when only Interbull data were used. In all cases, GEBVs had higher correlations than traditional EBVs, and the highest correlations were for predictions from the ssGBLUP procedure using combined data (0.75), or with all available DRP from Interbull records only (one-step blending approach, 0.69). The ssGBLUP predictions using the first three domestic lactation records in the TD model were correlated with GMACE predictions by 0.69, 0.64 and 0.61 for milk yield, protein yield and fat yield, respectively.  相似文献   

6.
Serial measurements of three milkability traits from two commercial dairy farms in Germany were used to estimate heritabilities and breeding values (BVs). Overall, 6352 cows in first, second and third lactations supplied 2 188 810 records based on daily values recorded from 1998 to 2003. Only the records between day 8 and day 305 after calving were considered. The estimated genetic correlations between different parities within the three milkability traits ranged from rg = 0.88 to 0.98, i.e. they were sufficiently high to warrant a repeatability model. The resulting estimated heritability coefficients were h2 = 0.42 for average milk flow, h2 = 0.56 for maximum milk flow and h2 = 0.38 for milking time. We analysed the genetic correlation between milkability and somatic cell score (SCS) and between milkability and the liability to mastitis, respectively, as the optimum milk flow for udder health is not well defined. There were 66 146 records with information on somatic cell count. Furthermore, 23 488 days of medical treatment for udder diseases were available, resulting in 2 600 302 days of observation in total. Heritabilities for the liability to mastitis, estimated with a test-day threshold model, were h2 = 0.19 and h2 = 0.13, depending on the data-recording period (first 50 days of lactation and first 305 days of lactation, respectively). With respect to the relationship between milkability and udder health, the results indicated a slight and linear correlation insofar as one can assume: the higher the milk flow, the worse the udder health. For this reason, bulls and cows with high BVs for milk flow should be excluded from breeding to avoid a deterioration of udder health. The establishment of a special data-recording scheme for functional traits such as milkability and mastitis on commercial dairy farms may be possible according to these results.  相似文献   

7.
Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls.  相似文献   

8.
We investigated the effect of stage of pregnancy on estimates of breeding values for milk yield and milk persistency in Gyr and Holstein dairy cattle in Brazil. Test-day milk yield records were analyzed using random regression models with or without the effect of pregnancy. Models were compared using residual variances, heritabilities, rank correlations of estimated breeding values of bulls and cows, and number of nonpregnant cows in the top 200 for milk yield and milk persistency. The estimates of residual variance and heritabilities obtained with the models with or without the effect of pregnancy were similar for the two breeds. Inclusion of the effect of pregnancy in genetic evaluation models for these populations did not affect the ranking of cows and sires based on their predicted breeding values for 305-day cumulative milk yield. In contrast, when we examined persistency of milk yield, lack of adjustment for the effect of pregnancy overestimated breeding values of nonpregnant cows and cows with a long days open period and underestimated breeding values of cows with a short days open period. We recommend that models include the effect of days of pregnancy for estimation of adjustment factors for the effect of pregnancy in genetic evaluations of Dairy Gyr and Holstein cattle.  相似文献   

9.

Background

Today, genomic evaluations are an essential feature of dairy cattle breeding. Initially, genomic evaluation targeted young bulls but recently, a rapidly increasing number of females (both heifers and cows) are being genotyped. A rising issue is whether and how own performance of genotyped cows should be included in genomic evaluations. The purpose of this study was to assess the impact of including yield deviations, i.e. own performance of cows, in genomic evaluations.

Methods

Two different genomic evaluations were performed: one including only reliable daughter yield deviations of proven bulls based on their non-genotyped daughters, and one including both daughter yield deviations for males and own yield deviations for genotyped females. Milk yield, the trait most prone to preferential treatment, and somatic cell count, for which such a bias is very unlikely, were studied. Data consisted of two groups of animals from the three main dairy breeds in France: 11 884 elite females genotyped by breeding companies and 7032 cows genotyped for a research project (and considered as randomly selected from the commercial population).

Results

For several measures that could be related to preferential treatment bias, the elite group presented a different pattern of estimated breeding values for milk yield compared to the other combinations of trait and group: for instance, for milk yield, the average difference between estimated breeding values with or without own yield deviations was significantly different from 0 for this group. Correlations between estimated breeding values with or without yield deviations were lower for elite females than for randomly selected cows for milk yield but were very similar for somatic cell count.

Conclusions

This study demonstrated that including own milk performance of elite females leads to biased (over-estimated) genomic evaluations. Thus, milk production records of elite cows require specific treatment in genomic evaluation.  相似文献   

10.
The purpose of this study was to find ways of reducing changes of sire predicted transmitting ability for type’s final scores (PTATs) from the first to second crop of daughters. The PTATs were estimated from two datasets: D01 (scores recorded up to 2001) and D05 (scores recorded up to 2005). The PTAT changes were calculated as the difference between the evaluations based on D01 and D05. The PTATs were adjusted to a common genetic base of all evaluated cows born in 1995. The single-trait (ST) animal model included the fixed effects of the herd–year–season–classifier, age by year group at classification, stage of lactation at classification, registry status of animals, and additive genetic and permanent environment random effects. Unknown parent groups (UPGs) were defined based on every other birth year starting from 1972. Modifications to the ST model included the usage of a single record per cow, separate UPGs for first and second crop daughters, separate UPGs for sires and dams, and deepened pedigrees for dams with missing phenotypic records. Also, the multiple-trait (MT) model treated records of registered and grade cows as correlated traits. The mean PTAT change, for all of the sires, was close to zero in all of the models analyzed. The estimated mean PTAT change for 145 sires with 40 to 100 first crop and ≥200 second crop daughters was −0.33, −0.20, −0.13, −0.28, and −0.12 with ST, only first records, only last records, updated pedigrees, and allowing separate parent groups (PGs) for sires and dams after updating the pedigrees, respectively. The percentages of sires showing PTAT decline were reduced from 74.5 (with ST) to 57.3 by using only the last records of cows, and to 56.4 by allowing separate UPGs for sires and dams after updating the pedigrees. Though updating of the pedigrees alone was not effective, separate UPGs for sires together with additional pedigree was helpful in reducing the bias.  相似文献   

11.
A total of 19 376 test day (TD) milk yield records from the first three lactations of 1618 cows daughters of 162 sires were used to estimate genetic and phenotypic parameters and determine the relationship between daily milk yield and lactation milk yield in the Sahiwal cattle in Kenya. Variance components were estimated using animal models based on a derivative free restricted maximum likelihood procedure. Variance components were estimated using various univariate and multi-trait fixed regression test day models (TDM) that defined contemporary groups either based on the year-season of calving (YSCV) or on the year-season of TD milk sampling (YSTD). Variance components were influenced by CG which resulted in differences in heritability and repeatability estimates between TDM. Models considering YSTD resulted in higher additive genetic variances and lower residual variances compared with models in which YSCV was considered. Heritability estimates for daily yield ranged from 0.28 to 0.46, 0.38 to 0.52 and 0.33 to 0.52 in the first, second and third lactation, respectively. In the first and second lactation, the heritability estimates were highest between TD 2 and TD 4. Genetic correlations among daily milk yields ranged from 0.41 to 0.93, 0.50 to 0.83 and 0.43 to 86 in the first, second and third lactation, respectively. The phenotypic correlations were correspondingly lower. Genetic correlations were different from unit when fitting multi-trait TDM. Therefore, a multiple trait model would be more ideal in determining the genetic merit of dairy sires and bulls based on daily yield records. Genetic and phenotypic correlations between daily yield and lactation yields were high and positive. Genetic correlations ranged from 0.84 to 0.99, 0.94 to 1.00 and 0.94 to 0.97 in the first, second and third lactations, respectively. The corresponding phenotypic correlation estimates ranged from 0.50 to 0.85, 0.50 to 0.83 and 0.53 to 0.87. The high genetic correlation between daily yield and lactation yield imply that both traits are influenced by similar genes. Therefore daily yields records could be used in genetic evaluation in the Sahiwal cattle breeding programme.  相似文献   

12.
In a stochastic simulation study the effect of simultaneously changing the model for prediction of breeding values and changing the breeding goal was studied. A population of 100 000 cows with registrations on seven traits was simulated in two steps. In the first step of 15 years the population was selected for production and mastitis occurrence using a univariate model for prediction of breeding values for production and a trivariate model using information on mastitis treatments, udder depth and somatic cell score for prediction of breeding values for mastitis occurrence. In the second step six different scenarios were set up and simulated for 15 years combining two different breeding goals and three different models for prediction of breeding values in 20 replicates. Breeding goal 1 had relative economic value per genetic standard deviation on production (19.4) and mastitis occurrence ( − 50) whereas breeding goal 2 had a economic value on production (19.4), udder depth (4.2), mastitis occurrence ( − 50), non return rate (13.0) and days open ( − 16.75). Model 1 was a model similar to the one used in the first 15 years. Model 2 was an approximate multitrait model where solutions for fixed effects from a model corresponding to model 1 were subtracted from the phenotypes and a multitrait model with an overall mean, a year effect, an additive genetic and a residual effect were applied. Model 3 was a full multitrait model. Average genetic trends for total merit and each individual trait over 20 replicates were compared for each scenario. With the number of replicates the genetic responses using model 2 and 3 were not significant different. With a broad breeding goal using, model 2 or model 3 gave a significantly higher response in total merit than using model 1. Using a narrow breeding goal there was no significant difference between models used for prediction of breeding values. Results showed that with a breeding goal with a lot of emphasis on low heritable traits with a high economic value using a multitrait methodology for prediction of breeding values will redistribute the genetic progress in the total merit index. More gain will come from the low heritable traits in the breeding goal and less from traits with higher heritability. With a broad breeding goal and exploiting the available information in the data the inbreeding coefficient increased though not significantly.  相似文献   

13.
Summary The investigations of paternal half sibs start with the assumption that the transfer of an allele from a father to an offspring also indicates the inheritance of a distinct section of two homologous chromosomes from the father concerned. With the help of 20 gene systems, the transfers of single chromosome sections were marked and tested with regard to influences on milk performance traits. 1,457 German Friesian cattle, registered as daughters of three sires, were used. Some of the chromosome sections showed significant effects on the traits considered. Since especially those chromosomes which bear genes for milk proteins were involved, it was assumed that groups of linked loci influence the genetic variance of milk production. Possibilities for applying the results to the practical breeding situation and their significance are discussed.  相似文献   

14.
In statistical models, a quantitative trait locus (QTL) effect has been incorporated either as a fixed or as a random term, but, up to now, it has been mainly considered as a time-independent variable. However, for traits recorded repeatedly, it is very interesting to investigate the variation of QTL over time. The major goal of this study was to estimate the position and effect of QTL for milk, fat, protein yields and for somatic cell score based on test day records, while testing whether the effects are constant or variable throughout lactation. The analysed data consisted of 23 paternal half-sib families (716 daughters of 23 sires) of Chinese Holstein-Friesian cattle genotyped at 14 microsatellites located in the area of the casein loci on BTA6. A sequence of three models was used: (i) a lactation model, (ii) a random regression model with a QTL constant in time and (iii) a random regression model with a QTL variable in time. The results showed that, for each production trait, at least one significant QTL exists. For milk and protein yields, the QTL effect was variable in time, while for fat yield, each of the three models resulted in a significant QTL effect. When a QTL is incorporated into a model as a constant over time, its effect is averaged over lactation stages and may, thereby, be difficult or even impossible to be detected. Our results showed that, in such a situation, only a longitudinal model is able to identify loci significantly influencing trait variation.  相似文献   

15.
An efficient algorithm for genomic selection of moderately sized populations based on single nucleotide polymorphism chip technology is described. A total of 995 Israeli Holstein bulls with genetic evaluations based on daughter records were genotyped for either the BovineSNP50 BeadChip or the BovineSNP50 v2 BeadChip. Milk, fat, protein, somatic cell score, female fertility, milk production persistency and herd-life were analyzed. The 400 markers with the greatest effects on each trait were first selected based on individual analysis of each marker with the genetic evaluations of the bulls as the dependent variable. The effects of all 400 markers were estimated jointly using a 'cow model,' estimated from the data truncated to exclude lactations with freshening dates after September 2006. Genotype probabilities for each locus were computed for all animals with missing genotypes. In Method I, genetic evaluations were computed by analysis of the truncated data set with the sum of the marker effects subtracted from each record. Genomic estimated breeding values for the young bulls with genotypes, but without daughter records, were then computed as their parent averages combined with the sum of each animal's marker effects. Method II genomic breeding values were computed based on regressions of estimated breeding values of bulls with daughter record on their parent averages, sum of marker effects and birth year. Method II correlations of the current breeding values of young bulls without daughter records in the truncated data set were higher than the correlations of the current breeding values with the parent averages for fat and protein production, persistency and herd-life. Bias of evaluations, estimated as a difference between the mean of current breeding values of the young bulls and their genomic evaluations, was reduced for milk production traits, persistency and herd-life. Bias for milk production traits was slightly negative, as opposed to the positive bias of parent averages. Correlations of Method II with the means of daughter records adjusted for fixed effects were higher than parent averages for fat, protein, fertility, persistency and herd-life. Reducing the number of markers included in the analysis from 400 to 300 did not reduce correlations of genomic breeding values for protein with current breeding values, but did slightly reduce correlations with means of daughter records. Method II has the advantages as compared with the method of VanRaden in that genotypes of cows can be readily incorporated into the Method II analysis, and it is more effective for moderately sized populations.  相似文献   

16.
Piecewise Weibull proportional hazard models were used to investigate the effect of genetic and nongenetic factors on functional and true longevity traits of the Slovenian Brown cattle breed. Records of 37 908 Brown cows from 2401 Slovenian herds were used. As these herds were characterised by a relatively small average herd size starting from 6.7 in 1999 and increasing to 8.7 Brown cows per herd in 2008, milk yield classification was made within different herd size groups. The hazard rate was the lowest in the first part of each lactation and was increasing for later stages. Culling risk was lower for cows from herds increasing in size, for cows with higher milk production and for cows from a region with smaller herd sizes and tougher conditions for cattle breeding. The latter result is surprising and may be related to better attention to maintain the animals, despite their lower milk production. The introduction of the milk quota system and drought was found to have an important effect on culling policy between the last seasons of the years 2001 and 2003. Seasonal effects were not related to the milk quota year (from April to March), but to the effect of shortage in fodder during the winter time. The effect of age at first calving and the interaction between year and milk yield class were not found to be significant. Heritability for functional and for true longevity were similar at around 10% each. Inclusion of a correction for class of milk yield to approximate functional longevity increased the herd-year random effect variance by 53%, whereas the sire variance increased by only 14%. The correlation coefficient between ranks of breeding values for functional and true longevity was high (0.91), whereas genetic trends were not found to be significant. To assess their predictive ability, models were compared looking at the survival rate of 4212 second-crop daughters not included in the initial models. The average correlation between estimated breeding values and survival at different stages was 0.39 for true longevity and 0.43 for functional longevity. Results showed that ranking milk yield at population level is appropriate to correct for voluntary culling on low production in small herds.  相似文献   

17.
This study set out to demonstrate the feasibility of merging data from different experimental resource dairy populations for joint genetic analyses. Data from four experimental herds located in three different countries (Scotland, Ireland and the Netherlands) were used for this purpose. Animals were first lactation Holstein cows that participated in ongoing or previously completed selection and feeding experiments. Data included a total of 60 058 weekly records from 1630 cows across the four herds; number of cows per herd ranged from 90 to 563. Weekly records were extracted from the individual herd databases and included seven traits: milk, fat and protein yield, milk somatic cell count, liveweight, dry matter intake and energy intake. Missing records were predicted with the use of random regression models, so that at the end there were 44 weekly records, corresponding to the typical 305-day lactation, for each cow. A total of 23 different lactation traits were derived from these records: total milk, fat and protein yield, average fat and protein percentage, average fat-to-protein ratio, total dry matter and energy intake and average dry matter intake-to-milk yield ratio in lactation weeks 1 to 44 and 1 to 15; average milk somatic cell count in lactation weeks 1 to 15 and 16 to 44; average liveweight in lactation weeks 1 to 44; and average energy balance in lactation weeks 1 to 44 and 1 to 15. Data were subsequently merged across the four herds into a single dataset, which was analysed with mixed linear models. Genetic variance and heritability estimates were greater (P < 0.05) than zero for all traits except for average milk somatic cell count in weeks 16 to 44. Proportion of total phenotypic variance due to genotype-by-environment (sire-by-herd) interaction was not different (P > 0.05) from zero. When estimable, the genetic correlation between herds ranged from 0.85 to 0.99. Results suggested that merging experimental herd data into a single dataset is both feasible and sensible, despite potential differences in management and recording of the animals in the four herds. Merging experimental data will increase power of detection in a genetic analysis and augment the potential reference population in genome-wide association studies, especially of difficult-to-record traits.  相似文献   

18.
Strong genetic selection on production traits is considered to be responsible for the declined ability of dairy cows to ensure reproduction. The present study aimed to quantify the effect of genetic characteristics (breeds and genetic merit for production traits) and feeding systems (FS) on the ability of dairy cows to be inseminated. An experiment was conducted during 9 years on Normande and Holstein cows assigned to contrasted pasture-based FS. Diets were based on maize silage in winter and grazing plus concentrate in spring in the High FS; and on grass silage in winter and grazing with no concentrate during spring in the low FS. Within breed, cows were classified into two genetic groups with similar estimated breeding values (EBV) for milk solids: cows with high EBV for milk yield were included in a Milk-Group and those with high EBV for fat and protein contents were included in a Content-Group. Holstein produced more milk throughout lactation than Normande cows (+2294 kg in the High FS and +1280 kg in the Low FS, P<0.001) and lost more body condition to nadir (−1.00 point in the High FS and −0.80 kg in the Low FS, P<0.001). They also showed a poorer ability to be inseminated because of both a delayed commencement of luteal activity (CLA) and delayed first service (more days from start of the breeding season to first service, DAI1). Cows in the Milk-Group produced more milk than cows in the Content-Group, but milk solids production was similar. Cows in the Content-Group had earlier CLA than cows in the Milk-Group (P<0.01). Genetic group neither affected ovulation detection rate nor DAI1. Within breed and FS, cows with high genetic merit for milk yield had later CLA and DAI1. Cows in the High FS produced more milk and lost less condition to nadir than cows in the Low FS. FS did not affect dairy cows’ ability to be inseminated. However, cows with higher milk protein content, and presumably better energy balance, had earlier CLA (P<0.01) and DAI1 (P<0.10). In addition, higher milk yield was associated with poorer ovulation detection rate and oestrus intensity (P<0.05). The study showed that at similar EBV level for milk solids, selection for increased milk fat and protein content resulted in improved cyclicity and similar oestrous expression and submission rates compared with selection for increased milk yield.  相似文献   

19.
The diacylglycerol o-acyltransferase 1 gene (DGAT1) was investigated in Polish Black-and-White cattle. The frequency of the K allele was 0.60, 0.68 and 0.48 for AI sires (n=150), young bulls (n=139) and cows (n=213), respectively. The method of selective genotyping for identification of the quantitative trait nucleotide was verified through identification of DGAT1 effect on milk production traits. Daughters of six heterozygous bulls were selectively genotyped based on their milk traits. The genotypic frequencies differed between high and low yield groups representing milk and fat contents. The Kruskal-Wallis test revealed a highly significant effect of DGAT1 K232A in cows with extremely low fat content and a significant effect in cows with extremely high protein content of milk. No significant effect of AI sires' genotypes on their breeding value was found.  相似文献   

20.
The aim of the present study was to evaluate the prediction ability of models that cope with longevity phenotypic expression as uncensored and censored in Nellore cattle. Longevity was defined as the difference between the dates of last weaned calf and cow birth. There were information of 77 353 females, being 61 097 cows with uncensored phenotypic information and 16 256 cows with censored records. These data were analyzed considering three different models: (1) Gaussian linear model (LM), in which only uncensored records were considered; and two models that consider both uncensored and censored records: (2) Censored Gaussian linear model (CLM); and (3) Weibull frailty hazard model (WM). For the model prediction ability comparisons, the data set was randomly divided into training and validation sets, containing 80% and 20% of the records, respectively. There were considered 10 repetitions applying the following restrictions: (a) at least three animals per contemporary group in the training set; and (b) sires with more than 10 progenies with uncensored records (352 sires) should have daughters in the training and validation sets. The variance components estimated using the whole data set in each model were used as true values in the prediction of breeding values of the animals in the training set. The WM model showed the best prediction ability, providing the lowest χ2 average and the highest number of sets in which a model had the smallest value of χ2 statistics. The CLM and LM models showed prediction abilities 2.6% and 3.7% less efficient than WM, respectively. In addition, the accuracies of sire breeding values for LM and CLM were lower than those obtained for WM. The percentages of bulls in common, considering only 10% of sires with the highest breeding values, were around 75% and 54%, respectively, between LM–CLM and LM–WM models, considering all sires, and 75% between LM–CLM and LM–WM, when only sires with more than 10 progenies with uncensored records were taken into account. These results are indicative of reranking of animals in terms of genetic merit between LM, CLM and WM. The model in which censored records of longevity were excluded from the analysis showed the lowest prediction ability. The WM provides the best predictive performance, therefore this model would be recommended to perform genetic evaluation of longevity in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号