首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular aging is characterized by decreased nitric oxide (NO) bioavailability, oxidative stress, and enhanced apoptotic cell death. We hypothesized that interspecies comparative assessment of vascular function among rodents with disparate longevity may offer insight into the mechanisms determining successful vascular aging. We focused on four rodents that show approximately an order of magnitude range in maximum longevity (ML). The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known (ML > 28 yr), Damara mole rats (DMRs, Cryptomys damarensis; ML approximately 16 yr) and guinea pigs (GPs, Cavia porcellus; ML approximately 6 yr) have intermediate longevity, whereas laboratory mice are short living (ML approximately 3.5 yr). We compared interspecies differences in endothelial function, O(2)(-)* and H(2)O(2) production, and resistance to apoptotic stimuli in blood vessels. Sensitivity to acetylcholine-induced, NO-mediated relaxation was smaller in carotid arteries from NMRs, GPs, and DMRs than in mouse vessels. Measurements of production of O(2)(-)* (lucigenin chemiluminescence and ethidium bromide fluorescence) and H(2)O(2) (dichlorofluorescein fluorescence) showed that free radical production in vascular endothelial and smooth muscle cells is comparable in vessels of the three longer-living species and in arteries of shorter-living mice. In mouse arteries, H(2)O(2) (from 10(-6) to 10(-3) mol/l) and heat exposure (42 degrees C for 15-45 min) enhanced apoptotic cell death, as indicated by an increased DNA fragmentation rate and increased caspase 3/7 activity. In NMR vessels, only the highest doses of H(2)O(2) enhanced apoptotic cell death, whereas heat exposure did not increase DNA fragmentation rate. Interspecies comparison showed there is a negative correlation between H(2)O(2)-induced apoptotic cell death and ML. Thus endothelial vasodilator function and vascular production of reactive oxygen species do not correlate with maximal lifespan, whereas increased lifespan potential is associated with an increased vascular resistance to proapoptotic stimuli.  相似文献   

2.
The nox2-dependent NADPH oxidase was shown to be a major superoxide source in vascular disease, including diabetes. Smooth muscle cells of large arteries lack the phagocytic gp91phox subunit of the enzyme; however, two homologues have been identified in these cells, nox1 and nox4. It remained to be established whether also increases in protein levels of the nonphagocytic NADPH oxidase contribute to increased superoxide formation in diabetic vessels. To investigate changes in the expression of these homologues, we measured their expression in aortic vessels of type I diabetic rats. Eight weeks after streptozotocin treatment, we found a doubling in nox1 protein expression, while the expression of nox4 remained unchanged. This was associated with a significant increase in the NADPH oxidase activity in membrane fractions of diabetic heart and aortic tissue. Furthermore, we observed a decreased sensitivity of diabetic vessels to acetylcholine and nitroglycerin and a decrease in both acetylcholine-stimulated NO production and phosphorylation of VASP, despite an increase in endothelial NO synthase (NOSIII) expression. In addition, xanthine oxidase activity was markedly increased in plasma and 100,000 g supernatant of cardiac tissue of diabetic rats, while myocardial mitochondrial superoxide formation was only weakly enhanced. We conclude that in addition to phagocytic NADPH oxidase, also nonphagocytic, vascular NADPH oxidase subunit nox1, uncoupled NOSIII, and plasma xanthine oxidase contribute to endothelial dysfunction in the setting of diabetes mellitus.  相似文献   

3.
We tested the hypothesis that endothelin acting through the endothelial ET(B) receptor subtype and the nitric oxide (NO) pathway accounts for reduced myogenic reactivity of the renal resistance vasculature during pregnancy. Small renal arteries (100-200 microm) were isolated from virgin and midterm pregnant rats when gestational renal hyperfiltration and vasodilation are maximal in this species. Myogenic reactivity (the adjustment of arterial diameter in response to a change in transmural pressure) was assessed with a pressurized myograph system. A rapid increase in transmural pressure from 60 to 80 mmHg resulted in a 2.4% diameter increase in vessels from virgin compared with an 8.1% increase in arteries from midgestation rats (n = 8 each, P < 0.05). Thus myogenic reactivity is markedly reduced during pregnancy. Incubation with the NO synthase inhibitors, an ET(B) receptor subtype antagonist (RES-701-1), the nonselective ET(A/B) receptor blocker (SB-209670), or endothelial removal abrogated the reduced myogenic reactivity of vessels from gravid rats without affecting myogenic reactivity in arteries from virgin animals. Thus the endothelium mediates the reduced myogenic reactivity of small renal arteries of midgestation rats most likely through the ET(B) receptor subtype and NO pathway.  相似文献   

4.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

5.
Naked mole‐rats (NMRs) are mouse‐sized mammals that exhibit an exceptionally long lifespan (>30 vs. <4 years for mice), and resist aging‐related pathologies such as cardiovascular and pulmonary diseases, cancer, and neurodegeneration. However, the mechanisms underlying this exceptional longevity and disease resistance remain poorly understood. The oxidative stress theory of aging posits that (a) senescence results from the accumulation of oxidative damage inflicted by reactive oxygen species (ROS) of mitochondrial origin, and (b) mitochondria of long‐lived species produce less ROS than do mitochondria of short‐lived species. However, comparative studies over the past 28 years have produced equivocal results supporting this latter prediction. We hypothesized that, rather than differences in ROS generation, the capacity of mitochondria to consume ROS might distinguish long‐lived species from short‐lived species. To test this hypothesis, we compared mitochondrial production and consumption of hydrogen peroxide (H2O2; as a proxy of overall ROS metabolism) between NMR and mouse skeletal muscle and heart. We found that the two species had comparable rates of mitochondrial H2O2 generation in both tissues; however, the capacity of mitochondria to consume ROS was markedly greater in NMRs. Specifically, maximal observed consumption rates were approximately two and fivefold greater in NMRs than in mice, for skeletal muscle and heart, respectively. Our results indicate that differences in matrix ROS detoxification capacity between species may contribute to their divergence in lifespan.  相似文献   

6.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

7.
We hypothesized that aging is characterized by a reduced release of nitric oxide (NO) in response to shear stress in resistance vessels. Mesenteric arterioles and arteries of young (6 mo) and aged (24 mo) male Fischer 344 rats were isolated and cannulated. Shear stress (15 dyn/cm(2))-induced dilation was significantly reduced and shear stress (1, 5, 10, and 15 dyn/cm(2))-induced increases in perfusate nitrite were significantly smaller at all shear stress levels in vessels of aged rats. Inhibition of NO synthesis abolished shear stress-induced release of nitrite. Furthermore, shear stress (15 dyn/cm(2))-induced release of nitrate was significantly higher and total nitrite (nitrite plus nitrate) was significantly lower in vessels of aged rats. Tiron or SOD significantly increased nitrite released from vessels of aged rats, but this was still significantly less than that in young rats. Superoxide production was increased and the activity of SOD was decreased in vessels of aged rats. There were no differences in endothelial NO synthase (eNOS) protein and basal activity or in Cu/Zn-SOD and Mn-SOD proteins in vessels of the two groups, but extracellular SOD was significantly reduced in vessels of aged rats. Maximal release of NO induced by shear stress plus ACh (10(-5) M) was comparable in the two groups, but phospho-eNOS in response to shear stress (15 dyn/cm(2)) was significantly reduced in vessels of aged rats. These data suggest that an increased production of superoxide, a reduced activity of SOD, and an impaired shear stress-induced activation of eNOS are the causes of the decreased shear stress-induced release of NO in vessels of aged rats.  相似文献   

8.
Diet-induced obesity induces changes in mechanisms that are essential for the regulation of normal artery function, and in particular the function of the vascular endothelium. Using a rodent model that reflects the characteristics of human dietary obesity, in the rat saphenous artery we have previously demonstrated that endothelium-dependent vasodilation shifts from an entirely nitric oxide (NO)-mediated mechanism to one involving upregulation of myoendothelial gap junctions and intermediate conductance calcium-activated potassium channel activity and expression. This study investigates the changes in NO-mediated mechanisms that accompany this shift. In saphenous arteries from controls fed a normal chow diet, acetylcholine-mediated endothelium-dependent vasodilation was blocked by NO synthase and soluble guanylyl cyclase inhibitors, but in equivalent arteries from obese animals sensitivity to these agents was reduced. The expression of endothelial NO synthase (eNOS) and caveolin-3 in rat saphenous arteries was unaffected by obesity, whilst that of caveolin-1 monomer and large oligomeric complexes of caveolins-1 and -2 were increased in membrane-enriched samples. The density of caveolae was increased at the membrane and cytoplasm of endothelial and smooth muscle cells of saphenous arteries from obese rats. Dissociation of eNOS from caveolin-1, as a prerequisite for activation of the enzyme, may be compromised and thereby impair NO-mediated vasodilation in the saphenous artery from diet-induced obese rats. Such altered signaling mechanisms in obesity-related vascular disease represent significant potential targets for therapeutic intervention.  相似文献   

9.
Functional and morphological changes of blood vessels in cyclosporine A (CsA)-induced hypertension and nephrotoxicity were studied in spontaneously hypertensive rats (SHR). The role of the L-arginine-nitric oxide (NO) pathway and the importance of oxidative stress in CsA toxicity were also assessed. SHR (7-8 week old) on a high-sodium diet were treated with CsA (5 mg kg(-1) d(-1) s.c.) for 6 weeks. A proportion of the rats were treated concomitantly with the NO precursor L-arginine (1.7 g kg(-1)d(-1) p.o.). CsA elevated blood pressure and caused renal dysfunction and morphological nephrotoxicity. CsA also impaired mesenteric and renal arterial function and caused structural damage to intrarenal and extrarenal small arteries and arterioles. Medial atrophy of the mesenteric resistance vessels and decreased viability of smooth muscle cells of the thoracic aorta were observed. Renal and arterial damage was associated with the presence of inflammatory cells. CsA did not affect markers of the L-arginine-NO pathway (urinary cyclic GMP excretion or endothelial or inducible NO synthase expression in kidney, aorta or heart) or oxidative stress (urinary excretion of 8-isoprostaglandin F2alpha, plasma urate concentration or total radical trapping capacity). Concomitant L-arginine treatment did not affect CsA-induced changes in blood pressure or histological findings but tended to alleviate the arterial dysfunction. The renal and cardiovascular toxicity of CsA was associated with arterial dysfunction and morphological changes in small arteries and arterioles in SHR on a high-sodium diet. The findings did not support the role of oxidative stress or a defect in the L-arginine-NO pathway.  相似文献   

10.
In the present study, we investigated the effect of aging on spermatogonial stem cells (SSCs) and on the testicular somatic environment in ROSA26 mice. First, we examined testis weights at 2 mo, 6 mo, 1 yr, and 2 yr of age. At 1 and 2 yr, bilateral atrophied testes were observed in 50% and 75% of the mice, respectively; the rest of the mice had testis weights similar to those of young mice. Next, we evaluated the number and the activity of aged SSCs using spermatogonial transplantation. Numbers of SSCs in atrophied testes decreased in an age-dependent manner to as low as 1/60 of those in testes of young mice. Numbers of SSCs in nonregressed testes were similar regardless of age. The colony length, which is indicative of the potential of SSCs to regenerate spermatogenesis, was similar with donor cells from atrophied testes of 1-yr-old mice and those from testes of young mice, suggesting that SSCs remaining in 1-yr atrophied testes were functionally intact. Colonies arising from SSCs derived from 2-yr atrophied testes were significantly shorter, however, indicating that both SSC numbers and activity declined with age. Finally, we transplanted donor cells from young animals into 1- and 2-yr atrophied testes. Although the weight of 2-yr testes did not change after transplantation, that of 1-yr testes increased significantly, indicating that 1-yr, but not 2-yr, atrophied testes are permissive for regeneration of spermatogenesis by SSCs from young mouse testes. These results demonstrate that both SSCs and somatic environment in the testis are involved in the aging process.  相似文献   

11.
We demonstrated previously that cytochrome P-450 (CYP) 2C29 is the epoxyeicosatrienoic acid (EET) synthase responsible for the EET-mediated flow/shear stress-induced dilation of vessels of female nitric oxide (NO)-deficient mice (Sun D, Yang YM, Jiang H, Wu H, Ojami C, Kaley G, Huang A. Am J Physiol Regul Integr Comp Physiol 298: R862-R869, 2010). In the present study, we aimed to identify which specific CYP isoform(s) is the source of the synthesis and release of EETs in response to stimulation by shear stress in vessels of rats. Cannulated mesenteric arteries isolated from both sexes of N(G)-nitro-L-arginine methyl ester (L-NAME)-treated rats were perfused with 2 and 10 dyn/cm(2) shear stress, followed by collection of the perfusate to determine EET concentrations and isoforms. Shear stress stimulated release of EETs in the perfusate of female (but not male) NO-deficient vessels, associated with an EET-mediated vasodilation, in which 11,12- and 14,15-EET contributed predominantly to the responses. Rat CYP cDNA array screened a total of 32 CYP genes of mesenteric arteries, indicating a significant upregulation of CYP2C7 in female L-NAME-treated rats. Endothelial RNA and protein were extracted from intact single vessels. Expression of CYP2C7 mRNA and protein in pooled extractions of endothelial lysate was identified by PCR and Western blot analyses. Transfection of the vessels with CYP2C7 short interfering RNA eliminated the release of EETs, consequently abolishing the EET-mediated flow-induced dilation; these responses, however, were maintained in vessels transfected with nonsilencing short interfering RNA. Knockdown of endothelial CYP2C7 was confirmed by PCR and Western blot analyses. In conclusion, CYP2C7 is an endothelial EET synthase in the female rat vasculature, by which, in NO deficiency, shear stress stimulates the release of EETs to initiate vasodilation.  相似文献   

12.
The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted. We have revisited the rat-pigeon comparison in the most comprehensive manner to date. We have measured superoxide production (by heart, skeletal muscle and liver mitochondria), five different antioxidants in plasma, three tissues and mitochondria, membrane fatty acid composition (in seven tissues and three mitochondria), and biomarkers of oxidative damage. The only substantial and consistent difference that we have observed between rats and pigeons is their membrane fatty acid composition, with rats having membranes that are more susceptible to damage. This suggests that, although there was no difference in superoxide production, there is likely a much greater production of lipid-based ROS in the rat. We conclude that the differences in superoxide production reported previously were due to the arbitrary selection of heart muscle to source mitochondria and the provision of succinate. Had mitochondria been harvested from other tissues or other relevant mitochondrial metabolic substrates been used, then very different conclusions regarding differences in oxidative stress would have been reached.  相似文献   

13.
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries from CH rats (barometric pressure = 380 Torr; 48 h) was greater than that of controls (barometric pressure = 630 Torr). In addition, studies employing pressurized mesenteric arteries (100-200 microM ID) abluminally loaded with the Ca(2+) indicator fura 2-AM demonstrated that although NO synthase (NOS) inhibition normalized agonist-induced vasoconstrictor responses between groups, VSM cell [Ca(2+)] in vessels from CH rats remained diminished compared with controls. To determine whether elevated NO production following CH results from increased NOS protein levels, we performed Western blots for NOS isoforms by using mesenteric arteries from control and CH rats. Endothelial NOS levels did not differ between groups, and other NOS isoforms were not detected in these samples. Selective endothelial loading of fura 2-AM was employed to test the hypothesis that elevated endothelial cell [Ca(2+)] following CH accounts for enhanced NOS activity. These experiments demonstrated greater endothelial cell [Ca(2+)] in mesenteric arteries isolated from CH rats compared with controls. We conclude that enhanced production of NO resulting from elevated endothelial cell [Ca(2+)] contributes to attenuated reactivity following CH by decreasing VSM cell Ca(2+) sensitivity.  相似文献   

14.
The purine nucleotide ATP mediates pulmonary vasodilation at birth by stimulation of P2Y purine receptors in the pulmonary circulation. The specific P2Y receptors in the pulmonary circulation and the segmental distribution of their responses remain unknown. We investigated the effects of purine nucleotides, ATP, ADP, and AMP, and pyrimidine nucleotides, UTP, UDP, and UMP, in juvenile rabbit pulmonary arteries for functional characterization of P2Y receptors. We also studied the expression of P2Y receptor subtypes in pulmonary arteries and the role of nitric oxide (NO), prostaglandins, and cytochrome P-450 metabolites in the response to ATP. In conduit size arteries, ATP, ADP, and AMP caused greater relaxation responses than UTP, UDP, and UMP. In resistance vessels, ATP and UTP caused comparable vasodilation. The response to ATP was attenuated by the P2Y antagonist cibacron blue, the NO synthase antagonist N(omega)-nitro-l-arginine methyl ester (l-NAME), and the cytochrome P-450 inhibitor 17-octadecynoic acid but not by the P2X antagonist alpha,beta-methylene ATP or the cyclooxygenase inhibitor indomethacin in conduit arteries. In the resistance vessels, l-NAME caused a more complete inhibition of the responses to ATP and UTP. Responses to AMP and UMP were NO and endothelium dependent, whereas responses to ADP and UDP were NO and endothelium independent in the conduit arteries. RT-PCR showed expression of P2Y(1), P2Y(2), and P2Y(4) receptors, but not P2Y(6) receptors, in lung parenchyma, pulmonary arteries, and pulmonary artery endothelial cells. These data suggest that distinct P2Y receptors mediate the vasodilator responses to purine and pyrimidine nucleotides in the juvenile rabbit pulmonary circulation. ATP appears to cause NO-mediated vasodilation predominantly through P2Y2 receptors on endothelium.  相似文献   

15.
We studied the roles of estrogen receptors (ER) and aromatase in the mediation of flow-induced dilation (FID) in isolated arteries of male ERalpha-knockout (ERalpha-KO) and wild-type (WT) mice. FID was comparable between gracilis arteries of WT and ERalpha-KO mice. In WT arteries, inhibition of NO and prostaglandins eliminated FID. In ERalpha-KO arteries, N(omega)-nitro-L-arginine methyl ester (L-NAME) inhibited FID by approximately 26%, whereas indomethacin inhibited dilations by approximately 50%. The remaining portion of the dilation was abolished by additional administration of 6-(2-proparglyoxyphenyl)hexanoic acid (PPOH) or iberiotoxin, inhibitors of epoxyeicosatrienoic acid (EET) synthesis and large-conductance potassium channels, respectively. By using an electrophysiological technique, we found that, in the presence of 10 dyne/cm(2) shear stress, perfusate passing through donor vessels isolated from gracilis muscle of ERalpha-KO mice subjected to L-NAME and indomethacin elicited smooth muscle hyperpolarization and a dilator response of endothelium-denuded detector vessels. These responses were prevented by the presence of iberiotoxin in detector or PPOH in donor vessels. Gas chromatography-mass spectrometry (GC-MS) analysis indicated a significant increase in arterial production of EETs in ERalpha-KO compared with WT mice. Western blot analysis showed a significantly reduced endothelial nitric oxide synthase expression but enhanced expressions of aromatase and ERbeta in ERalpha-KO arteries. Treatment of ERalpha-KO arteries with specific aromatase short-interfering RNA for 72 h, knocked down the aromatase mRNA and protein associated with elimination of EET-mediation of FID. Thus, FID in male ERalpha-KO arteries is maintained via an endothelium-derived hyperpolarizing factor/EET-mediated mechanism compensating for reduced NO mediation due, at least in part, to estrogen aromatized from testosterone.  相似文献   

16.
To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 μm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes.  相似文献   

17.
Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order mesenteric arteries of young (6 mo) and aged (24 mo) male Fischer-344 rats were selectively ligated for 3 wk to elevate blood flow in a first-order artery [high blood flow (HF)]. An in vitro study was then conducted on first-order arteries with HF and normal blood flow (NF) to assess shear stress (1, 10, and 20 dyn/cm(2))-induced release of NO into the perfusate. In HF arteries of both age groups, shear stress-induced NO production increased significantly. In 24-mo-old rats, the reduced shear stress-induced NO production in NF arteries was normalized by HF to a level similar to that in NF arteries of 6-mo-old rats. The increased NO production in HF arteries of 24-mo-old rats was associated with increased shear stress-induced dilation, expression of eNOS protein, and shear stress-induced eNOS phosphorylation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, reduced shear stress-induced eNOS phosphorylation and vasodilation. Superoxide production decreased significantly in HF compared with NF arteries in 24-mo-old rats. The decreased superoxide production was associated with significant increases in CuZn-SOD and extracellular SOD protein expressions and total SOD activity. These results suggest that stimulation with chronic HF restores shear-stress-induced activation of eNOS and antioxidant ability in aged arteries.  相似文献   

18.
Late pregnancy in rats is characterized by a decrease in arterial pressure and in isolated arterial vessels response to vasoconstrictors. In uterine arteries the pregnancy-associated attenuation of the response to vasoconstrictors has been attributed to an increase in basal and agonist-induced endothelial NO production. However, the role of NO in pregnancy-associated changes of systemic arteries reactivity to vasoactive agents remains to be fully elucidated. We examined whether pregnancy influences the reactivity of systemic arteries to vasodilator or vasoconstrictor agents through NO-dependent mechanisms. Thoracic aortic rings and mesenteric arterial bed of late pregnant rats showed refractoriness to phenylephrine-induced vasoconstriction that was abolished by NO synthase inhibition. The potency of L-NNA to enhance tension of aortic rings preconstricted with phenylephrine (10–20% of their maximal response) was significantly lower in preparations from pregnant animals. In phenylephrine-contracted aortas and mesenteric bed, the effects of the endothelium-dependent vasodilators acetylcholine, A23187 and bradykinin, were not influenced by pregnancy. Similarly, pregnancy did not affect the vasodilator responses of adenosine, isoproterenol, capsaicin, nitroprusside, forskolin, and Hoe234 in the mesenteric bed. NO synthase activity measured by determining the conversion of L−[3H]-arginine to L−[3H]-citrulline in aorta and mesenteric arteries homogenates was not altered by pregnancy. These findings show that endothelial-dependent and -independent vasodilators action as well as NO synthase activity in systemic arteries is uninfluenced by pregnancy, whereas pregnancy-associated hyporeactivity of systemic arteries to vasoconstrictors is related to an enhanced endothelial NO production either spontaneous or elicited directly or indirectly by vasoconstrictor agents. This interpretation implies that the enhanced NO production observed in systemic arteries during late pregnancy involves cellular pathways other than the ones involved in the response to endothelium-dependent vasodilators such as acetylcholine.  相似文献   

19.
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.  相似文献   

20.
This study was designed to investigate the cardiovascular consequences of oral administration of Cedrelopsis grevei (CG) in normotensive rats. Experiments were designed to investigate hemodynamic parameters in vivo as well as the consequences of CG treatment on the vasoconstriction response to norepinephrine and the vasorelaxant response to ACh ex vivo in isolated aortas and small mesenteric arteries (SMA). Treatment of male Wistar rats with 80 mg/kg CG for 4 wk induced a progressive decrease in systolic blood pressure. In the aorta, CG did not significantly alter the response to norepinephrine despite the participation of extraendothelial nitric oxide (NO)-induced hyporeactivity. In the SMA, contraction to norepinephrine was not modified by CG treatment even though it enhanced the participation of endothelial NO. Endothelium-dependent relaxation to ACh was increased in both the aorta and SMA from CG-treated rats. In the aorta from CG-treated rats, the mechanism involved superoxide dismutase (SOD)- and catalase-sensitive free radical production. The latter was associated with enhanced expression of Cu/Zn SOD and endothelial NO synthase. These results suggest that oral administration of CG produces a decrease in blood pressure in normotensive rats. This hemodynamic effect was associated with enhanced endothelium-dependent relaxation and an induction of Cu/Zn SOD and endothelial NO synthase expressions in the vessel wall. They also show subtle mechanisms that compensate for the increased participation of NO to maintain unchanged agonist-induced contractility. These data provide a pharmacological basis for the empirical use of CG against cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号