首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Evolutionary studies often estimate fitness components with the aim to make predictions about the outcome of selection. Depending on the system and the question, different fitness components are used, but their usefulness for predicting the outcome of selection is rarely tested. Here we estimate host fitness components in different ways with the aim to test how well they agree with each other and how well they predict host fitness at the population level in the presence of the parasite. We use a Daphnia magna-microparasite system to study the competitive ability of host clones in the absence and presence of the parasite, the infection intensity of the parasite in individuals of twelve host clones (an estimate of both host resistance and parasite reproductive success), and parasite persistence in small host populations (an estimate of R 0 of the parasite). Analysis of host competitive ability and parasite persistence reveals strong host genotype effects, while none are found for infection intensity. Host competitive ability further shows a genotype-specific change upon infection, which is correlated with the relative persistence of the parasite in the competing hosts. Hosts in which the parasite persists better suffer a competitive disadvantage in the parasite’s presence. This suggests that in this system, parasite-mediated selection can be predicted by parasite persistence, but not by parasite infection intensity.  相似文献   

2.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

3.
Laine AL 《Ecology letters》2008,11(4):327-337
There have been numerous investigations of parasite local adaptation, a phenomenon important from the perspectives of both basic and applied evolutionary ecology. Recent work has demonstrated that temperature has striking effects on parasite performance by mediating trade-offs in parasite life history and through genotype × environment interactions. To test whether parasite local adaptation is mediated by temperature, I measured the performance of sympatric populations against allopatric populations of a fungal pathogen, Podosphaera plantaginis , on its host Plantago lanceolata , across a temperature gradient. I used data on parasite life history and epidemiology to derive fitness estimates to measure local adaptation. The results demonstrate unambiguously that trajectories of host–parasite co-evolution are tightly coupled with parasite adaptation to the abiotic habitat, as the strength, and even direction, of local adaptation varied with temperature. Patterns of local adaptation further depended on how parasite fitness was estimated, highlighting the importance of choosing relevant fitness measures in studies of local adaptation.  相似文献   

4.

Background

Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load). Furthermore, our experimental coevolution of hosts (Tribolium castaneum) and parasites (Nosema whitei) included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host- and parasite-specific responses.

Results

In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype × parasite genotype interactions (GH × GP) were observed for spore load (the trait of lower genetic complexity), but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host- and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite adaptation that was masked by host counter-adaptation, suggesting the presence of complex and probably dynamically changing fitness landscapes.

Conclusions

Our results demonstrate that the use of replicate naive populations can be a useful tool to differentiate between host and parasite adaptation in complex and dynamic fitness landscapes. The absence of clear local adaptation patterns during coevolution with a sexual host showing a complex genetic architecture for resistance suggests that directional selection for generality may be more important attributes of host-parasite coevolution than commonly assumed.  相似文献   

5.
Theory predicts that the direction of local adaptation depends on the relative migration rates of hosts and parasites. Here we measured relative migration rates and tested for local adaptation in the interaction between a tree hole mosquito (Ochlerotatus sierrensis) and a protozoan parasite (Lambornella clarki). We found strong support for the hypothesis that the host migrates more than its parasite. Hosts colonized artificial tree holes in the field at a much higher rate than the parasite. Field releases of the parasite demonstrated that it colonizes and persists in natural tree holes where it was previously absent, suggesting that parasite distribution is limited by its migratory ability. Although the host migrates more than its parasite, we found no evidence for local adaptation by hosts and some evidence for local adaptation by parasites. Other life history traits of the host and parasite may also influence patterns in local adaptation, particularly parasite virulence and host dormancy.  相似文献   

6.
Coevolutionary models often assume host infection by parasites depends on a single bout of molecular recognition. As detailed immunological studies accumulate, however, it becomes increasingly apparent that the outcome of host–parasite interactions more generally depends on complex multiple step infection processes. For example, in plant and animal innate immunity, recognition steps are followed by downstream effector steps that kill recognized parasites, with the outcome depending on an escalatory molecular arms race. Here, we explore the consequences of such multistep infection processes for coevolution using a genetically explicit model. Model analyses reveal that polymorphism is much greater at recognition loci than effector loci, that host–genotype by parasite–genotype (Gh × Gp) interactions are larger for the recognition step, and that the recognition step contributes more to local adaptation than the effector step. These results suggest that (1) local adaptation is more likely when fitness measures are related to recognition versus downstream effectors, (2) effector loci, while mechanistically important, are less likely to harbor the Gh × Gp variation that fuels coevolution, and (3) recognition loci are better candidates for genomic hotspots of coevolution.  相似文献   

7.
Parasites may be expected to become locally adapted to their hosts. However, while many empirical studies have demonstrated local parasite adaptation, others have failed to demonstrate it, or have shown local parasite maladaptation. Researchers have suggested that gene flow can swamp local parasite-host dynamics and produce local adaptation only at certain geographical scales; others have argued that evolutionary lags can account for both null and maladaptive results. In this paper, we use item response theory (IRT) to test whether host range influences the likelihood of parasites locally adapting to their hosts. We collated 32 independent experiments testing for local adaptation, where parasites could be assigned as having either broad or narrow host ranges (BHR and NHR, respectively). Twenty-five tests based on BHR parasites had a significantly lower average effect size than seven NHR tests, indicating that studies based on BHR parasites are less likely to demonstrate local parasite adaptation. We argue that this may relate to evolutionary lags during diffuse coevolution of BHR parasites with their hosts, rather than differences in experimental approaches or other confounds between BHR and NHR studies.  相似文献   

8.
Abstract.— Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris . Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and their performance was similar on both host types. Therefore, these results do not indicate local adaptation of the parasites to their sympatric hosts. However, the parasite populations differed in average biomass and number of flowers per plant and in their effect on host biomass. These results indicate that the virulence of the parasite varied among populations, suggesting genetic variation. Theoretical models suggest that local adaptation is likely to be detected if the host and the parasite have different evolutionary potentials, different migration rates, and the parasite is highly virulent. In the interaction between R. serotinus and A. capillaris all the theoretical prerequisites for local adaptation may not be fulfilled.  相似文献   

9.
Environmentally transmitted parasites spend time in the abiotic environment, where they are subjected to a variety of stressors. Learning how they face this challenge is essential if we are to understand how host–parasite interactions may vary across environmental gradients. We used a zooplankton–bacteria host–parasite system where availability of sunlight (solar radiation) influences disease dynamics to look for evidence of parasite local adaptation to sunlight exposure. We also examined how variation in sunlight tolerance among parasite strains impacted host reproduction. Parasite strains collected from clearer lakes (with greater sunlight penetration) were most tolerant of the negative impacts of sunlight exposure, suggesting local adaptation to sunlight conditions. This adaptation came with both a cost and a benefit for parasites: parasite strains from clearer lakes produced relatively fewer transmission stages (spores) but these strains were more infective. After experimental sunlight exposure, the most sunlight-tolerant parasite strains reduced host fecundity just as much as spores that were never exposed to sunlight. Sunlight availability varies greatly among lakes around the world. Our results suggest that the selective pressure sunlight exposure exerts on parasites may impact both parasite and host fitness, potentially driving variation in disease epidemics and host population dynamics across sunlight availability gradients.  相似文献   

10.
Many trophically transmitted parasites manipulate their intermediate host phenotype, resulting in higher transmission to the final host. However, it is not known if manipulation is a fixed adaptation of the parasite or a dynamic process upon which selection still acts. In particular, local adaptation has never been tested in manipulating parasites. In this study, using experimental infections between six populations of the acanthocephalan parasite Pomphorhynchus laevis and its amphipod host Gammarus pulex, we investigated whether a manipulative parasite may be locally adapted to its host. We compared adaptation patterns for infectivity and manipulative ability. We first found a negative effect of all parasite infections on host survival. Both parasite and host origins influenced infection success. We found a tendency for higher infectivity in sympatric versus allopatric combinations, but detailed analyses revealed significant differences for two populations only. Conversely, no pattern of local adaptation was found for behavioral manipulation, but manipulation ability varied among parasite origins. This suggests that parasites may adapt their investment in behavioral manipulation according to some of their host's characteristics. In addition, all naturally infected host populations were less sensitive to parasite manipulation compared to a naive host population, suggesting that hosts may evolve a general resistance to manipulation.  相似文献   

11.
The microsporidium Octosporea bayeri can infect its host, the planktonic crustacean Daphnia magna, vertically and horizontally. The two routes differ greatly in the way the parasite leaves the harbouring host (transmission) and in the way it enters a new, susceptible host (infection). Infections resulting from each route may thus vary in the way they affect host and parasite life-histories and, subsequently, host and parasite fitness. We conducted a life-table experiment to compare D. magna infected with O. bayeri either horizontally or vertically, using three different parasite isolates. Both the infection route and the parasite isolate had significant effects on host life-history. Hosts matured at different ages depending on the parasite isolate, and at a size that varied with infection route. The frequency of host sterility and the host's life-time reproductive success were affected by both the infection route and the parasite isolate. The infection route also affected parasite life-history. The production of parasite spores was much higher in vertically than in horizontally infected hosts. We found a trade-off between the production of spores (the parasite's horizontal fitness component) and the production of infected host offspring (the parasite's vertical fitness component). This study shows that hosts and parasites can react plastically to different routes of infection, suggesting that ecological factors that may influence the relative importance of horizontal and vertical transmission can shape the evolution of host and parasite life histories, and, consequently, the evolution of virulence.  相似文献   

12.
Locally adapted parasites have higher infectivity and/or fitness on sympatric than on allopatric hosts. We tested local adaptation of a holoparasitic plant, Cuscuta europaea, to its host plant, Urtica dioica. We infected hosts from five sites with holoparasites from the same five sites and measured local adaptation in terms of infectivity and parasite performance (biomass) in a reciprocal cross‐infection experiment. The virulence of the parasite did not differ between sympatric and allopatric hosts. Overall, parasites had higher infectivity on sympatric hosts but infectivity and parasite performance varied among populations. Parasites from one of the populations showed local adaptation in terms of performance, whereas parasites from one of the populations had higher infectivity on allopatric hosts compared with sympatric hosts. This among‐population variation may be explained by random variation in parasite adaptation to host populations or by time‐lagged co‐evolutionary oscillations that lead to fluctuations in the level of local adaptation.  相似文献   

13.
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.  相似文献   

14.
Host-parasite coevolution is often described as a process of reciprocal adaptation and counter adaptation, driven by frequency-dependent selection. This requires that different parasite genotypes perform differently on different host genotypes. Such genotype-by-genotype interactions arise if adaptation to one host (or parasite) genotype reduces performance on others. These direct costs of adaptation can maintain genetic polymorphism and generate geographic patterns of local host or parasite adaptation. Fixation of all-resistant (or all-infective) genotypes is further prevented if adaptation trades off with other host (or parasite) life-history traits. For the host, such indirect costs of resistance refer to reduced fitness of resistant genotypes in the absence of parasites. We studied (co)evolution in experimental microcosms of several clones of the freshwater protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. After two and a half years of culture, inoculation of evolved and naive (never exposed to the parasite) hosts with evolved and founder parasites revealed an increase in host resistance, but not in parasite infectivity. A cross-infection experiment showed significant host clone-by-parasite isolate interactions, and evolved hosts tended to be more resistant to their own (local) parasites than to parasites from other hosts. Compared to naive clones, evolved host clones had lower division rates in the absence of the parasite. Thus, our study indicates de novo evolution of host resistance, associated with both direct and indirect costs. This illustrates how interactions with parasites can lead to the genetic divergence of initially identical populations.  相似文献   

15.
We followed adaptation of the chytrid parasite Zygorhizidium planktonicum during 200 generations of growth on its host, the freshwater diatom Asterionella formosa, in a serial passage experiment. Evolution of parasite fitness was assessed both on a homogenous and heterogeneous host population, consisting of respectively a single new and ten different new host strains. These 10 host strains were genetically different and also varied in their initial susceptibility to the parasite. Parasite fitness increased significantly and rapidly on the new, genetically homogenous host population, but remained unaltered during 200 generations of growth on the heterogeneous host population. Enhanced parasite fitness was the result of faster and more efficient transmission, resulting in higher values of R0 (number of secondary infections). Consequently, parasites that evolved within the uniclonal host population infected significantly more of these hosts than did their ancestors. We thus provide experimental evidence for the widely held view that host genetic diversity restricts evolution of parasites and moderates their harmful effects. Genetically uniform host populations are not only at increased risk from fungal epidemics because they all share the same susceptibility, but also because new parasite strains are able to adapt quickly to new host environments and to improve their fitness.  相似文献   

16.
Local adaptation theory predicts that, on average, most parasite species should be locally adapted to their hosts (more suited to hosts from local than distant populations). Local adaptation has been studied for many horizontally transmitted parasites, however, vertically transmitted parasites have received little attention. Here we present the first study of local adaptation in an animal/parasite system where the parasite is vertically transmitted. We investigate local adaptation and patterns of virulence in a crustacean host infected with the vertically transmitted microsporidian Nosema granulosis. Nosema granulosis is vertically transmitted to successive generations of its crustacean host, Gammarus duebeni and infects up to 46% of adult females in natural populations. We investigate local adaptation using artificial horizontal infection of different host populations in the UK. Parasites were artificially inoculated from a donor population into recipient hosts from the sympatric population and into hosts from three allopatric populations in the UK. The parasite was successfully established in hosts from all populations regardless of location, infecting 45% of the recipients. Nosema granulosis was vertically (transovarially) transmitted to 39% of the offspring of artificially infected females. Parasite burden (intensity of infection) in developing embryos differed significantly between host populations and was an order of magnitude higher in the sympatric population, suggesting some degree of host population specificity with the parasite adapted to its local host population. In contrast with natural infections, artificial infection with the parasite resulted in substantial virulence, with reduced host fecundity (24%) and survival (44%) of infected hosts from all the populations regardless of location. We discuss our findings in relation to theories of local adaptation and parasite-host coevolution.  相似文献   

17.
Parasites are known to exert strong selection pressures on their hosts and, as such, favour the evolution of defence mechanisms. The negative impact of parasites on their host can have substantial consequences in terms of population persistence and the epidemiology of the infection. In natural populations, however, it is difficult to assess the cost of infection while controlling for other potentially confounding factors. For instance, individuals are repeatedly exposed to a variety of parasite strains, some of which can elicit immunological memory, further protecting the host from subsequent infections. Cost of infection is, therefore, expected to be particularly strong for primary infections and to decrease for individuals surviving the first infectious episode that are re-exposed to the pathogen. We tested this hypothesis experimentally using avian malaria parasites (Plasmodium relictum-lineage SGS1) and domestic canaries (Serinus canaria) as a model. Hosts were infected with a controlled dose of P. relictum as a primary infection and control birds were injected with non-infected blood. The changes in haematocrit and body mass were monitored during a 20 day period. A protein of the acute phase response (haptoglobin) was assessed as a marker of the inflammatory response mounted in response to the infection. Parasite intensity was also monitored. Surviving birds were then re-infected 37 days post primary infection. In agreement with the predictions, we found that primary infected birds paid a substantially higher cost in terms of infection-induced reduction in haematocrit compared with re-exposed birds. After the secondary infection, re-exposed hosts were also able to clear the infection at a faster rate than after the primary infection. These results have potential consequences for the epidemiology of avian malaria, since birds re-exposed to the pathogen can maintain parasitemia with low fitness costs, allowing the persistence of the pathogen within the host population.  相似文献   

18.
Zhong D  Pai A  Yan G 《Genetics》2005,169(4):2127-2135
Information on the molecular basis of resistance and the evolution of resistance is crucial to an understanding of the appearance, spread, and distribution of resistance genes and of the mechanisms of host adaptation in natural populations. One potential important genetic constraint for the evolution of resistance is fitness cost associated with resistance. To determine whether host resistance to parasite infection is associated with fitness costs, we conducted simultaneous quantitative trait loci (QTL) mapping of resistance to parasite infection and fitness traits using the red flour beetle (Tribolium castaneum) and the tapeworm parasite (Hymenolepis diminuta) system in two independent segregating populations. A genome-wide QTL scan using amplified fragment length polymorphism (AFLP) markers revealed three QTL for beetle resistance to tapeworm infection. These three QTL account for 44-58% variance in beetle infection intensity. We identified five QTL for fecundity and five QTL for egg-to-adult viability, which accounted for 36-57% and 36-49%, respectively, of the phenotypic variance in fecundity and egg-to-adult viability. The three QTL conferring resistance were colocalized with the QTL affecting beetle fitness. The genome regions that contain the QTL for parasite resistance explained the majority of the variance in fecundity and egg-to-adult viability in the mapping populations. Colocalization of QTL conferring resistance to parasite infection and beetle fitness may result from the pleiotropic effects of the resistance genes on host fitness or from tight linkages between resistance genes and adverse deleterious mutations. Therefore, our results provide evidence that the genome regions conferring resistance to tapeworm infection are partially responsible for fitness costs in the resistant beetle populations.  相似文献   

19.
Co-infecting parasite genotypes typically compete for host resources limiting their fitness. The intensity of such competition depends on whether parasites are reproducing in a host, or using it primarily as a transmission vehicle while not multiplying in host tissues (referred to as 'competition hypothesis'). Alternatively, simultaneous attack and co-infection by several parasite genotypes might facilitate parasite infection because such a diverse attack could present an additional challenge to host immune defence (referred to as 'facilitation hypothesis'). We tested the competition hypothesis by comparing the production of transmission stages (cercariae) from snails infected with one or two genotypes of the trematode Diplostomum pseudospathaceum. We found that cercarial production did not differ between the two groups of snails, suggesting lower per genotype production in double infections, and competition for host resources. Second, we tested the facilitation hypothesis by comparing parasite infection success on fishes (proportion of parasites establishing in the host) using cercariae originating from single-infected snails, double-infected snails and artificial mixtures of the single genotypes. In both cases, we found higher infection success when fishes were challenged with two parasite genotypes instead of one, supporting the facilitation hypothesis. Our results suggest that constraints defining the success of multiple genotype infections in parasites with multiple host life cycles include both between-genotype resource competition in the host and performance of host immune defences against a diverse parasite challenge.  相似文献   

20.
In spatiotemporally varying environments, host-parasite coevolution may lead to either host or parasite local adaptation. Using reciprocal infestations over 11 pairs of plots, we tested local adaptation in the hen flea and its main host, the great tit. Flea reproductive success (number of adults at host fledging) was lower on host individuals from the same plot compared with foreign hosts (from another plot), revealing flea local maladaptation. Host reproductive success (number of fledged young) for nests infested by foreign fleas was lower compared with the reproductive success of controls, with an intermediate success for nests infested by local fleas. This suggests host local adaptation although the absence of local adaptation could not be excluded. However, fledglings were heavier and larger when reared with foreign fleas than when reared with local fleas, which could also indicate host local maladaptation if the fitness gain in offspring size offsets the potential cost in offspring number. Our results therefore challenge the traditional view that parasite local maladaptation is equivalent to host local adaptation. The differences in fledgling morphology between nests infested with local fleas and those with foreign fleas suggest that flea origin affects host resource allocation strategy between nestling growth and defense against parasites. Therefore, determining the mechanisms that underlie these local adaptation patterns requires the identification of the relevant fitness measures and life-history trade-offs in both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号