首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticotropin-releasing factor (CRF) administered intracerebroventricularly (ICV) to rats and mice has been shown to elicit a variety of behaviors resembling those that occur in stress. In a novel multicompartment chamber, ICV CRF altered the behaviors in a manner closely resembling that observed following a period of restraint. In particular, 75 ng CRF ICV or 30-40 min restraint markedly reduced the time mice spent in contact with novel stimuli. ICV injections of a peptide antagonist of CRF, alpha-helical CRF9-41 (ahCRF), reversed the effects of restraint on this measure. This effect of ahCRF was dose dependent, with a minimal effective dose of 10 micrograms. Other behavioral measures appeared normal, and ahCRF did not significantly alter the stimulus-contact time in unrestrained mice. These results provide strong evidence to support the hypothesis that endogenous CRF may be a factor affecting stress-induced changes in exploratory behavior in mice.  相似文献   

2.
3.
This study aimed to examine whether the vomeronasal organ (VNO) is a prerequisite in mice to acquire essential information from various social odors and whether long-term VNO dysfunction can elicit behavioral and physiological changes in mice. We used binary choice tests and habituation–dishabituation tests to measure the abilities of male mice to recognize social odors. We found that males with the VNO ablation failed to show olfactory preferences between the odors of mate versus non-mate females, offspring versus non-offspring pups, or opposite-sex conspecifics versus predators (cats or rats), but were capable of discriminating between the two treatments in each of the paired odors, suggesting that male mice with VNO ablation might smell out the chemical differences of the two types of odors, but could not extract the biological information contained in the odors. Furthermore, prolonged VNO deficiency resulted in a reduction in crossing behavior in a light/dark box, the frequency of urine marking, and the time spent in the center in an open field. These results indicate that chronic VNO dysfunction led to anxiety-like or submissive behavior. In addition, males with VNO ablation had atrophic adrenal glands and hypertrophic preputial glands, suggesting that VNO dysfunction could damage the physiological conditions to buffer the stress and that pheromone perception deficiency might enhance self-odor production in mice.  相似文献   

4.
Caloric deprivation inhibits reproduction, including copulatory behaviors, in female mammals. Decreases in metabolic fuel availability are detected in the hindbrain, and this information is relayed to the forebrain circuits controlling estrous behavior by neuropeptide Y (NPY) projections. In the forebrain, the nutritional inhibition of estrous behavior appears to be mediated by corticotropin-releasing factor (CRF) or urocortin-signaling systems. Intracerebroventricular (ICV) infusion of the CRF antagonist, astressin, prevents the suppression of lordosis by food deprivation and by NPY treatment in Syrian hamsters. These experiments sought to determine which CRF receptor type(s) is involved. ICV infusion of the CRF receptor subtype CRFR2-selective agonists urocortin 2 and 3 (UCN2, UCN3) inhibited sexual receptivity in hormone-primed, ovariectomized hamsters. Furthermore, the CRFR2-selective antagonist, astressin 2B, prevented the inhibition of estrous behavior by UCN2 and by NPY, consistent with a role for CRFR2. On the other hand, astressin 2B did not prevent the inhibition of behavior induced by 48-h food deprivation or ICV administration of CRF, a mixed CRFR1 and CRFR2 agonist, suggesting that activation of CRFR1 signaling is sufficient to inhibit sexual receptivity in hamsters. Although administration of CRFR1-selective antagonists (NBI-27914 and CP-154,526) failed to reverse the inhibition of receptivity by CRF treatment, we could not confirm their biological effectiveness in hamsters. The most parsimonious interpretation of these findings is that, although NPY inhibits estrous behavior via downstream CRFR2 signaling, food deprivation may exert its inhibition via both CRFR1 and CRFR2 and that redundant neuropeptide systems may be involved.  相似文献   

5.
6.
Two cognate receptors (CRF(1) and CRF(2)) mediate the actions of the stress-regulatory corticotropin-releasing factor (CRF) family of peptides. Defining the respective roles of these receptors in the central nervous system is critical in understanding stress neural circuitry and the development of psychiatric disorders. Here, we examined the role of CRF(2) in several paradigms that assess coping responses to stress. We report that CRF(2) knockout mice responded to a novel setting with increased aggressive behavior toward a bulbectomized conspecific male and show increased immobility during acute swim stress compared with wild-type mice. In addition, CRF(2)-deficient mice exhibited impaired adaptation to isolation stress as evinced by prolonged hypophagia and associated weight loss. Collectively, these results point toward a role for CRF(2) pathways in neural circuits that subserve stress-coping behaviors.  相似文献   

7.
Corticotropin-releasing factor inhibits gastric emptying in dogs   总被引:1,自引:0,他引:1  
The purpose of the present study was to evaluate the effect of ovine corticotropin-releasing factor (CRF) on the gastric emptying of a saline meal in conscious dogs. Intravenous infusion of CRF (220-880 pmol . kg-1 . h-1), induced a significant linear dose dependent inhibition of gastric emptying (16-71%). CRF action was not modified by naloxone and not associated with vomiting or other side effects. Intravenous infusion of sulfated cholecystokinin octapeptide (CCK-8, 50-200 pmol . kg-1 . h-1) inhibited gastric emptying by 29-52%. The relative potency of CRF with respect to CCK-8 is 4 times less. These studies demonstrated that CRF given intravenously in picomolar amount inhibits gastric emptying of a liquid meal in dogs through a mechanism unrelated to opiates. The role of endogenous CRF in stress-induced inhibition of gastric emptying needs to be investigated.  相似文献   

8.
Recent findings on the role of corticotropin-releasing hormone (CRH) in the regulation of stress and its consequences are summarized and analyzed in the review. Being involved in stress-activating system this neurohormone is referred to as a neurochemical factor triggering and integrating both endocrine and behavioral functions. The CRH distribution in hypothalamus and extrahypothalamic brain regions relevant to its involvement in the controlling of endocrine processes and behavior is viewed in details. Distinct behavioral outcomes of stress and the contribution of amygdalar, hippocampal, and striatal CRH-structures, implicated in general organism response to external influences, are widely discussed. From this viewpoint the mechanisms involved in the development of post-stress psychopathology, as well as drug addiction and alcoholism are treated.  相似文献   

9.
Corticotropin-releasing factor (CRF) has been shown to have potent central nervous system-activating effects when administered intracerebroventricularly (i.c.v.). In the present experiment, this activating effect was exaggerated by use of a stress-motivated behavioral paradigm. Low doses of CRF (0.01 and 0.1 micrograms/rat) administered i.c.v. facilitated stress-induced fighting. More importantly, alpha-helical CRF-(9-41), a CRF antagonist, blocked stress-induced fighting produced by higher levels of stress. These results suggest that CRF in the central nervous system may have a role in mediating behavioral responses to stress.  相似文献   

10.
11.
Corticotropin-releasing factor receptors and actions in rat Leydig cells   总被引:5,自引:0,他引:5  
Rat Leydig cells possess functional high affinity receptors for corticotropin-releasing factor (CRF). CRF inhibited human chorionic gonadotropin (hCG)-induced androgen production in cultured fetal and adult Leydig cells in a dose-dependent manner, but it had no effect on basal testosterone secretion. Comparable inhibitory effects of CRF were observed in the presence or absence of 3-isobutyl-1-methylxanthine. CRF treatment caused a marked reduction of steroid precursors of the androgen pathway (from pregnenolone to testosterone) during gonadotropin stimulation, but it did not influence their basal levels. The inhibitory action of CRF on hCG-induced steroidogenesis was fully reversed by 8-bromo-cAMP but was not affected by pertussis toxin. The action of CRF was rapid; and it was blocked by coincubation with anti-CRF antibody. CRF caused no changes in hCG binding to Leydig cells, and in contrast to other target tissues, CRF did not stimulate cAMP production, indicating that CRF receptors are not coupled to Gs in Leydig cells. These studies have demonstrated that CRF-induced inhibition of the acute steroidogenic action of hCG is exerted at sites related to receptor/cyclase coupling or cAMP formation. The inhibitory effects of CRF in the Leydig cell do not occur through the Gi unit of adenylate cyclase, but could involve pertussis toxin-insensitive G protein(s). These observations demonstrate that CRF has a novel and potent antireproductive effect at the testicular level. Since CRF is synthesized in the testis and is present in Leydig cells, it is likely that locally produced CRF could exert negative autocrine modulation on the stimulatory action of luteinizing hormone on Leydig cell function.  相似文献   

12.
Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation.  相似文献   

13.
14.
Two inbred strains of mice, C57BL/6J and DBA/2J, ranging in age from 2 to 38 months, were tested in an open field using the free exploration method. Scores were obtained for locomotor activity, exploratory behavior and emotionality. Strain differences were observed for all three variables. Beginning at late maturity (12 months), locomotor activity decreased with increasing age. Exploratory behavior was at a low level for DBA/2J mice at all ages. For C57BL/6J mice, exploratory behavior decreased significantly between 2 and 6 months and remained stable thereafter. Emotionality remained unchanged with advancing age for both strains of mice.  相似文献   

15.
Miyata M  Okada D  Hashimoto K  Kano M  Ito M 《Neuron》1999,22(4):763-775
This study of rat cerebellar slices yielded two lines of evidence indicating that the corticotropin-releasing factor (CRF) found in climbing fibers (CFs) is critical for the induction of long-term depression (LTD) at the parallel fiber (PF) synapses of Purkinje cells (PCs) by their conjunctive activation with either stimulation of CFs or depolarization of PCs. First, LTD induction was effectively blocked by specific CRF receptor antagonists, alpha-helical CRF-(9-41) (alpha-h CRF) and astressin; and second, LTD was no longer observed in CF-deprived cerebella but was restored by CRF replenishment. The data obtained in this study suggest that these effects are mediated by protein kinase C (PKC) and not by Ca2+ signaling or cyclic GMP (cGMP) production.  相似文献   

16.
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1‐Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1‐Tg mice express high levels of the hMTH1 hydrolase that degrades 8‐oxodGTP and 8‐oxoGTP and excludes 8‐oxoguanine from both DNA and RNA. Compared to wild‐type animals, hMTH1‐overexpressing mice have significantly lower steady‐state levels of 8‐oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age‐dependent accumulation of DNA 8‐oxoguanine that occurs in wild‐type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1‐Tg animals live significantly longer than their wild‐type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1‐Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1‐Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1‐Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.  相似文献   

17.
The neuropathological hallmark shared between Alzheimer's disease (AD) and familial frontotemporal dementia (FTDP-17) are neurofibrillary tangles (NFT) which are composed of filamentous aggregates of the microtubule-associated protein tau. Their formation has been reproduced in transgenic mice, which express the FTDP-17-associated mutation P301L of tau. In these mice, tau aggregates are found in many brain areas including the hippocampus and the amygdala, both of which are characterized by NFT formation in AD. Previous studies using an amygdala-specific test battery revealed an increase in exploratory behavior and an accelerated extinction of conditioned taste aversion in these mice. Here, we assessed P301L mice in behavioral tests known to depend on an intact hippocampus. Morris water maze and Y-maze revealed intact spatial working memory but impairment in spatial reference memory at 6 and 11 months of age. In addition, a modest disinhibition of exploratory behavior at 6 months of age was confirmed in the open field and the elevated O-maze and was more pronounced during aging.  相似文献   

18.
Anti-dsDNA Abs are characteristic of lupus and can be found deposited in the kidneys of lupus mice. Previously, we have shown that pathogenic anti-dsDNA Abs as well as Ig eluted from the kidneys of nephritic lupus mice cross-react with alpha-actinin. Moreover, cross-reactivity with alpha-actinin characterizes nephritogenic anti-dsDNA Abs in humans with lupus as well. To determine whether Abs generated against alpha-actinin in vivo cross-react with nuclear Ags, we s.c. immunized 10-wk-old female BALB/c mice (and several other nonautoimmune mice strains) with alpha-actinin in adjuvant. Immunized but not control mice displayed high titers of anti-nuclear Abs and IgG anti-chromatin autoantibodies, hypergammaglobulinemia, renal Ig deposition, and proteinuria. The specificity of the anti-chromatin response was determined by Western blotting of purified chromatin with serum from alpha-actinin immunized mice. By proteomic analysis, a 25-kDa doublet band was conclusively identified as high mobility group box (HMGB) proteins 1 and 3, and a 70-kDa band was identified as heat shock protein 70 (hsp70), both of which are known antigenic targets in murine lupus. Binding to purified HMGB1 and hsp70 by immunized mice sera was confirmed by ELISA and Western blot. Immunized mice sera binding to both 25- and 70-kDa bands were significantly inhibited by alpha-actinin and chromatin. Importantly, a panel of nephritogenic mAbs had significantly higher affinity for alpha-actinin, chromatin, HMGB, and hsp70 as compared with nonpathogenic Abs, suggesting a common motif in these Ags that is targeted by pathogenic autoantibodies.  相似文献   

19.
20.
Alterations in the functional capacity of pancreatic beta cells appear to contribute to coxsackievirus B4-induced, long-term hyperglycemia in mice. Mice infected with prototype B4 or its diabetogenic E2 variant were monitored for abnormalities in sugar metabolism (by the glucose tolerance test), for total protein and insulin synthesis in intact beta cells, for alterations in beta cell proteins, and for virus replication. The infected mice were hypoglycemic at 72 h postinfection and hyperglycemic at 6 weeks. At 8 weeks postinfection, few of the prototype- but most of the E2-infected mice remained hyperglycemic. Total protein and synthesis of immunoprecipitable insulin decreased during early infection. At 8 weeks postinfection, insulin synthesis in the prototype-infected mice increased almost to the level of control mice. Although insulin synthesis increased likewise in the E2-infected mice, it remained well below the control level. Two-dimensional gel electrophoresis revealed the disappearance of many cellular proteins in beta cells from E2-infected mice but of very few in cells from prototype-infected mice at 72 h postinfection. Many of the disappearing proteins reappeared gradually in the E2-infected group. Infectious virus was recovered from the infected beta cells only at 72 h postinfection. Functional impairment in these cells appears to be a factor in virus-induced hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号