首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using characters discernible through electron microscopy, we redefine the organ traditionally identified as the frontal organ in acoelomorph turbellarians as being a collection of two to several large mucus-secreting glands whose necks emerge together through a frontal pore at the exact apical pole of the body, i.e. at the point where the pattern of epidermal ciliary rootlets converges. Representatives that we have studied of each of the acoel families Paratomellidae, Diopisthoporidae, Solenofilomorphidae, Convolutidae, Otocelidae, and Mecynostomidae, as well as a representative of the Nemertodermatida, have such glands. Up to five additional types of glands that open anteriorly outside of the frontal pore, some of which are indistinguishable from glands of the general body wall, could be seen in the nemertodermatid, in Hesiolicium inops (Paratomellidae), and in representatives of the latter four acoel families. In Paratomella, three different types of glands open in diffuse fashion in a frontal glandular complex reminiscent of that in the Macrostomida.Sensory elements near the frontal pore appear to be independent of the gland necks, and so the organ cannot be considered a sensory organ.The frontal organ, as described above, appears very likely to be homologous within the Acoelomorpha, and represents another strong (although unrooted) autapomorphy for this line of turbellarian evolution.  相似文献   

2.
In the courtship behavior of the German cockroach, the male presents tergal glands to the female and feeds her with glandular secretions to place her in the appropriate precopulatory position. The phagostimulant activity of the secretions was quantitatively examined using the polyethylene glycol film method. The methanol extract of the glands on the eighth tergite induced a potent feeding response in 6-day-old virgin females (EC 50 = 0.0037 male equivalent/40 g PEG spot). However, there was no temporal relation between the feeding response and the sexual receptivity of the females. Moreover, besides virgin females, the extract induced a feeding response in gravid or mated females, males, and the last-instar nymphs. These results strongly suggest that the secretions function as a dietary feeding stimulant in principle but as a courtship pheromone in the context of courtship behavior where the stimulants are offered as a nuptial gift.  相似文献   

3.
The distribution and quality of glycoproteins was studied by means of electron microscopic cytochemical methods, particularly lectin cytochemistry, in the secretory cells of the eccrine nasolabial glands of the North American raccoon (Procyon lotor). In the dark and clear glandular cells, complex glycoconjugates were demonstrable, predominantly, in secretory granules, the cisternae of the Golgi apparatus, the surface coat of the plasma membrane, and as glycogen particles. Secretory granules found in the dark cells contained a variety of saccharide residues, such as α-d-mannose, β-d-galactose, β-N-acetyl-d-glucosamine and sialic acid. Several sugars were also detectable in the surface coat of the plasma membrane and the Golgi apparatus.The results obtained may be helpful to understand the specific functions of the glandular secretions of the raccoon nasolabial glands. These could be, particularly, binding of water on the snout surface and protection against microbial hazards, to maintain the structural and functional integrity of the relatively thin snout epidermis in carnivores.  相似文献   

4.
Summary Males and females of Cryptocercus punctulatus possess tergal glands which differ in position, size, morphology, and chemical composition of their secretions. Ultrastructural studies reveal the presence of class 1 and class 3 glandular units interspersed throughout the glands; class 3 glandular units are 30 times as numerous as in the female, but no cytological difference was found between the sexes. The morphology of the tergal glands is characterized by the occurrence of a subcuticular space reservoir, a dense tracheal system, and a thick collagenous layer instead of the typical basement membrane. Comparison with the termite abdominal gland system indicates a great similarity in the fine structure. The biological function of the tergal glands is discussed.Abbreviations A Class 1 gland cell - B Class 3 gland cell - cf Collagen fibrils - d Duct - ea End-apparatus - EC Endocuticle - ef Epicuticular filaments - ep Epicuticle - j Septate junctions - m Mitochondria - mt Microtubules - mv Microvilli - pc Pore-canal - R Intracuticular reservoir - rc Receptor canal - S Saccule cell - t 6–10 Terga 6 to 10 - TG Tergal gland - tr Trachea - * Subcuticular space - Secretory material - Secretory vesicles - Pinocytosis vacuoles  相似文献   

5.
Junoy, J., Montalvo, S., Roldán, C. and García‐Corrales, P. 2000. Ultrastructural study of the bacillary, granular and mucoid proboscidial gland cells of Riseriellus occultus (Nemertini, Heteronemertini). — Acta Zoologica (Stockholm) 81 : 235–242. The ultrastructure of six types (G5‐G10) of proboscidial gland cells whose cell necks emerge independently on the epithelium surface is analysed and compared with data from other nemerteans. These types differ in cytological features, as well as in the morphology of their respective secretory granules. Secretory granules of the types G5 and G6 have a bacillary shape, and differ from each other based on their contents and dimensions. Secretory granules of the types G7 and G8 are spherical to ovoid; type G8 gland cells are monociliated, and their secretory granules contain a paracrystalline material. Types G9 and G10 gland cells are typically goblet‐shaped; secretory granules in the type G9 have a spherical shape, contain a homogeneous electron dense material and maintain their individuality, whereas those of the G10 type are elongate and have fibrillar contents, showing a tendency to fuse before they are extruded. The mucus sheet of the proboscis is responsible for lubrication of its epithelial surface. Secretion products of type G10 gland cells form the background substance of this mucus, and those of the G5 type confer stickiness to it. Type G9 gland cells could provide the toxic component to the mucus, and type G7 and G8 gland cells could be concerned with the production of enzymatic secretions.  相似文献   

6.
Summary A new multicellular glandular sensory organ is described forCatanema sp. (Nematoda, Stilbonematinae). The organs terminate in setae and are distributed in six longitudinal rows along the body. Two types of glandular cells (type A and type B), one monociliary sensory cell and one undifferentiated epidermal cell are combined in the basiepidermal organ. A comparison of epidermal glands as well as sensory organs in Nematoda is made. A causal relationship between the development of such complex, large and numerous glandular sensory organs and the occurrence of species-specific, symbiotic epibacteria inCatanema sp. seems probable, although there is no simple correlation between the distribution of these organs and epibacteria. A mucous cover over the bacterial layer, released by the glandular sensory organs, may create a microenvironment for the interaction between epibionts and host.Abbreviations (used in figures) a amphid - A1–A4 type 1–4 granules of type A gland cell - an annuli - b bacteria - B1–B3 type 1–3 granules of type B gland cell - bl basal lamina - bp basal part of seta - bz basal zone of cuticle - c cuticle - ca canal - cg caudal gland - ci cilium - cz cortical zone of cuticle - d dictyosomes - e epidermis - e co extracellular coat - em extracellular matrix - ep epicuticle - f filaments - gcA type 1 gland cell - gcB type 2 gland cell - i lp inner labial papillae - m mitochondrion - me membranes of type 2 gland cell - mo mouth opening - mz median zone of cuticle - n nucleus - nu nucleolus - p process - pv primary vesicle of type A gland cell - r ribosomes - s seta - sc sensory cell - sp secretory product - tj tight junction - tp terminal part of seta - uc undifferentiated epidermal cell - va vacuoles or vesicles of epidermal cells - ve vesicles of sensory cell  相似文献   

7.
Many anuran species are characterized by sexually dimorphic skin glands. These glands often are concentrated on specific areas, such as the mental region, flanks, or the nuptial pads. We studied the histology and histochemistry of mental and lateral glands in Hypsiboas punctatus, and compared them to skin from other body regions. We describe four types of dermal glands, two types of mucous and two types of serous glands. The mucous glands are formed by a single layered epithelium. The mucocytes surrounding a central lumen are filled with polyhedral granules. Ordinary mucous glands are small sized glands with cubical epithelium, mucoid content, and small granules. Specialized mucous glands are characterized by a larger size, a columnar epithelium, a proteinaceous content and larger granules. Both types of serous glands are syncytial and share some structural features including size, shape, and morphology of secretory granules. However, ordinary and specialized serous glands differ in their histochemical properties, size and appearance of secretory granules, and glandular outlets. The specialized type of mucous glands in H. punctatus resembles most SDSGs described in anurans, whereas the presence of specialized serous glands that are sexually dimorphic is less common. Both specialized glands occur only in mental and lateral regions of males, whereas ordinary mucous and ordinary serous glands occur in males and females. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Present models of turbellarian evolution depict the organism with a frontal organ — a complex of glands whose necks emerge at the anterior tip of the body — and therefore imply that this organ is homologous throughout the Turbellaria. However, comparisons of representatives of the Acoela and Macrostomida, two putatively primitive orders of the Turbellaria, show that frontal organs in these two are not similar in ultrastructure or histochemistry. The acoel Convoluta pulchra had a prominent cluster of frontal mucous glands whose necks emerged together in a frontal pore at the exact apical pole of the organism, and an array of smaller glands of at least five other types opened at the anterior end, separately from and ventral to this pore. The frontal organs (Stirndrüsen) of two species of Macrostomum on the other hand, comprised an array of discretely emerging necks of at least two gland types including one with rhabdiform (rhammite) and one with globular mucous secretion granules neither of which emerge at the apical pole. In neither species did the organ appear to be sensory. Our findings indicate a low probability of homology between the frontal glands of the Acoela and Macrostomida.  相似文献   

9.
Summary The photoreceptors ofPogaina suecica correspond to the type of pigment cup ocelli. Each eye consists of one cup cell and three sensory cells. The most conspicuous differentiations of these eyes are lens elements formed by giant mitochondria densely filled with homogeneous electron-dense material. From electron microscopical findings available to date it is hypothesized that mitochondrial lensing might be an autapomorphy of a taxon comprising the Provorticidae Kirgisellinae, Dalyelliidae and Graffillidae groups which are ascribed to the paraphyletic Dalyellioida.Abbreviations l 1–3 lenses - npc nucleus of the pigment cell - pc pigment cell - pg pigment granule - rh rhabdomeres - sc 1–3 sensory cells  相似文献   

10.
The epidermis of the tentacles of Phoronis australis consists of six cell types: supporting cells, choanocyte-like sensory cells, both types monociliated, secretory A-cells with a mucous secretion, and three kinds of B-cells with mucoprotein secretions. On cross-sections of the tentacle, one can distinguish four faces: the frontal one, heavily ciliated and located between the two frontolateral rows of sensory cells, the lateral and the abfrontal ones. The orientation of the basal structures of the cilia is related to the direction of their beat. The basiepidermal nervous system is grouped mainly at the frontal and abfrontal faces. The basement membrane is thickest on the frontal face and consists of circular collagen fibrils near the epidermis and longitudinal ones near the peritoneum. All peritoneal cells surrounding the mesocoel are provided with smooth longitudinal myofibrils, and isolated axons are situated between these cells and the basement membrane. The wall of the single blood capillary in each tentacle consists of epitheliomuscular cells with circular myofilaments, lying on a thin internal basal lamina; there is no endothelium.  相似文献   

11.
The organization of the mucomicrovillar complex of the vomeronasal sensory epithelium of adult rats was examined using confocal laser scanning microscopy. In specimens labeled with the FITC-conjugated isolectin B4 of Bandeiraea simplicifolia, which recognizes terminal -galactose sugar residues of glycoconjugates, we demonstrated that the mucomicrovillar complex was composed of islet-like structures with a high-density -galactose core. The mucomicrovillar complex was further resolved into sensory and mucoid components in double-labeling and dual scanning experiments. The sensory component, which consists of the dendritic terminals of olfactory marker protein-immunoreactive vomeronasal receptor neurons, contained cytosolic glycoconjugates with terminal -galactose sugar residues. The extracellular mucoid component consisted of glycoconjugates containing terminal -galactose derived from the glands associated with the vomeronasal organ. These results demonstrated the complex microchemical organization of the sensory and mucoid components of the mucomicrovillar complex.  相似文献   

12.
Summary The ultrastructure of the epidermal layer of both the oral and arm podia of the brittle star Ophiocomina nigra is described. Despite external differences, little variation occurs in their internal structure. The podial epidermis, which is overlain by a three-layered cuticle, consists of five cell types: support, mucous, sensory, adhesive secretory and monociliated neurosecretory-like cells. Areas of specialisation are superimposed on this basic plan. These comprise four cells forming cohesive units, made up of two adhesive secretory, one sensory and one monociliated neurosecretory-like cells. The two adhesive secretory cells may be identical or vary in the structure of their secretory packets. The sensory cells are of the normal type bearing a short cilium with a 9+2 microtubular arrangement. The monociliated neurosecretory-like cells contain many small dense vesicles and a short sub-cuticular cilium of irregular microtubular structure. Together, they appear to form a sensory-secretory complex which functions in adhesion both for feeding and locomotion. A system in which the secretion of the monociliated neurosecretory-like cell may control adhesive secretion is proposed.  相似文献   

13.
Summary Complex carbohydrate components of secretory granules and the glycocalix were analysed in surface epithelia, endoepithelial glands and exoepithelial tubuloalveolar glands of the biliary-ductular system (guinea pig). Brunner glands and pyloric glands were studied for comparison. The columnar epithelial cells of the gallbladder and biliary ducts displayed a well-developed PAS-positive apical glycocalix. These materials strongly bound Ricinus communis AI, Ulex europaeus I, Lotus tetragonolobus A and wheat-germ-A lectins. With the exception of Lotus A lectin which did not bind at all, the same lectins stained the basolateral cell surface. The secretory granules in the supranuclear regions of surface epithelia and in the exoepithelial glands strongly bound Ricinus A I, Ulex europaeus I, wheat-germ-A and Helix pomatia lectins. Concanavalin A was less intensively bound by the secretions of tubuloalveolar glands than by the secretory granules in surface epithelia. The luminal and basolateral cell surfaces of glandular cells in the exoepithelial glands were stained by the same spectrum of lectins as were the less distinct. In the guinea pig, the lectin-binding patterns of tubuloalveolar glands in the biliary ducts closely resembled those of Brunner glands and pyloric glands. The secretions of the tubuloalveolar glands were different from the secretion of surface epithelia, as they bound Concanavalin A less intensively.  相似文献   

14.
The nauplius eye in Cyclestherida, Laevicaudata and Spinicaudata (previously collectively termed Conchostraca) consists of four cups of inverse sensory cells separated by a pigment layer and a tapetum layer. There are two lateral and two medial cups, a ventral medial cup and a posterior medial cup. The pigment and tapetum layers contain two different kinds of pigment granules, the inner pigment layer relatively large, dark (and electron dense) granules, and the outer tapetum layer light, reflective pigment granules. The presence of four cups and two different kinds of pigment granules are interpreted as autapomorphies of Phyllopoda. The position and shape of the nauplius eye in Spinicaudata is very distinct and herein interpreted as an autapomorphy of this taxon.Additional frontal eyes might be present dorsally or ventrally in varying proximity to the nauplius eye, but they have separate nerves from their sensory cells to the nauplius eye centre in the protocerebrum. Rhabdomeric structures are present in all these frontal eyes, evidencing their light sensitivity. In Lynceus biformis and L. tatei (Laevicaudata), two pairs of frontal eyes were found. In Cyclestheria hislopi (Cyclestherida), an unpaired ventral frontal eye is present. We did not find additional frontal eyes in Limnadopsis parvispinus and Caenestheriella sp. (Spinicaudata).  相似文献   

15.
  • 1.1. The Koschewnikow glands (KG) of honeybee queens are composed of type III glandular units; secretions are emitted from ducts that open onto the entire surface of the intersegmental membrane.
  • 2.2. Secretory activity is characterized by the appearance of dense granules containing mainly glycoproteins, stained by periodic acid-thiocarbohydrazide-silver proteinate, extracted by pronase. In one-yearold mated queens, the gland degenerates. Secretory products originating from mitochondria are likely to be only carriers of pheromonal compounds.
  • 3.3. Topical treatment of worker bees (“pseudoqueens”) with EtOH extracts of queen Koschewnikow glands induced typical queen balling behaviour in workers of a bee colony.
  • 4.4. Twenty-eight compounds including acids, alcohols, alkanes and alkenes (C8H16C43H88) were characterized by gas liquid chromatography-mass spectrometry in queen KG extract. None of them is present in worker alarm pheromone which is secreted from worker KG.
  相似文献   

16.
The mantle margins of several anomalodesmatans bear multicellular arenophilic glands, the mucoid secretions of which attach sand grains and other foreign particles to the outer surface of the periostracum. These glands have been recorded for many of the anomalodesmatan families and are used as a key morphological character in recent attempts to unravel the evolutionary relationships within the Anomalodesmata. The glands occur in Laternula elliptica, L. truncata, L. boschasina and L. marilina, discharging from the top of muscular papillae at the distal tip of the siphons. The secretions are laid down as threads organized in longitudinal lines along the length of the periostracum that covers the siphonal walls. This is the first record of arenophilic mantle glands in members of the Laternulidae, a finding that not only broadens our current knowledge of the family's morphology, but assists in the reconstruction of anomalodesmatan evolutionary history.  相似文献   

17.
Summary In the planum nasolabial glands of the goat, glycoconjugates of glandular and duct cells have been studied by means of a series of electron microscopic cytochemical methods. In the glandular cells glycoconjugates with vicinal diol groupings were present in secretory granules, certain elements of the Golgi complex, lysosome-like dense bodies, the surface coat of the plasma membrane, the majority of intracellular cytomembranes, glycogen particles and the basal lamina. In duct cells, glycoconjugates with the same properties were localized in similar ultrastructures, except for secretory granules, which were not detected in these cells. By lectin cytochemistry, glycoconjugates in glandular cell secretory granules contained a variety of saccharide residues such as -d-mannose, -d-glucose,N-acetyl-d-glucosamine and -l-fucose. The cytochemical properties of the secretory glycoconjugates are discussed in relation to the physiological functions performed by the planum nasolabial glands in the goat.  相似文献   

18.
The effects of anoxia on water and solute transport across excised roots of young maize plants (Zea mays L. cv. Tanker) grown hydroponically have been studied. With the aid of the root pressure probe, root pressure (Pr), root hydraulic conductivity (Lpr), and root permeability (Psr), and reflection ( sr) coefficients were measured using potassium nitrate (a typical nutrient salt) and sodium nitrate (an atypical nutrient salt) as solutes. During a period of 10–15 h, anaerobic treatment (0.0–0.2 g O2·m-3 in root medium) caused a decrease of root pressure by 0.01–0.28 MPa (by 10–80% of original root pressure) after a short transient increase. For a time period of 5 h, the decrease in the stationary root pressure was not reversible. Under anaerobic conditions, roots still behaved like osmometers and were not leaky. The root hydraulic conductivity measured in osmotic experiments (osmotic solute: NaNO3) was smaller by one to two orders of magnitude than that measured in the presence of hydrostatic gradients. Both the osmotic and hydrostatic hydraulic conductivity decreased during anaerobic treatment by 28 and 44%, respectively, at a constant reflection coefficient of the solutes ( sr=0.3–1.0). As with root pressure, changes in root permeability to water and solutes were not reversible within 5 h. Under aerobic conditions and at low external concentrations (31–59 mOsmol·kg-1), osmotic response curves were monophasic for KNO3, i.e. there was no passive uptake of solutes. Response curves became biphasic at higher concentrations (100–150 mOsmol·kg-1)- For NaNO3, response curves were biphasic at all concentrations. Presumably, this pattern was a consequence of the fact that potassium had already accumulated in the xylem. During anoxia, accumulation of potassium in the xylem was reduced, and biphasic responses were also obtained at lower potassium concentrations applied to the medium. The results are discussed in terms of a pump/leak model of the root in which anoxia affects both the active ion pumping and the permeability of the root to nutrient salts (leakage). The effects of anaerobiosis on the passive transport properties of the root (Lpr, Psr, sr) are in line with the recently proposed composite transport model of the root.Abbreviations and Symbols Ar root surface area - Lpr root hydraulic conductivity - Lprh hydrostatic hydraulic conductivity of root - Lpro osmotic hydraulic conductivity of root - Pr root pressure - Psr permeability coefficient of root - sr reflection coefficient of root The authors thank Mr. Walter Melchior for the curve-fitting program used to work out Lprh values from root pressure relaxations and Mr. Mohammad Hajirezai (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth) for making the ATP measurements. The assistance of Mrs. Libuse Badewitz in making the drawings and the technical help of Mr. Burkhard Stumpf are also gratefully acknowledged.  相似文献   

19.
The release of the defence secretion from the large wax glands (sensilla sagittiformia) of Dermacentor variabilis ticks modifies the behaviour of other ticks by inducing clustering. A coating of natural tick secretion onto test objects (delipidized ticks, glass beads or filter paper discs) also elicits a clustering response, but a topically applied squalene, its major component, does not have this effect. The clustering response appears to be species specific: D. variabilis cluster on conspecific ticks that secreted but they fail to cluster on Amblyomma americanum or Ixodes scapularis ticks unless coated with secretions from D. variabilis. Volatile components in the defence secretion are involved in recruiting conspecific ticks to those that secreted. When attacked by predatory fire ants, Solenopsis invicta, D. variabilis clustered on individuals that had released the defence secretion. This suggests that the secretion protects ticks from predation by functioning as an alarm pheromone. If confirmed, this is the first report of an alarm pheromone and its glandular source in ticks. The terminology applicable to the integumental glands of ticks is discussed.  相似文献   

20.
Summary The functional morphology of the mammiliform penial glands ofLittorina saxatilis has been investigated with both light and electron microscopy. These penial glands line the ventral edge of the penis and orient with the female mantle during copulation. Secretions are released from the penial glands to this interface where they probably function in adhesion. The penial gland secretions comprise heterogeneous granules as well as apocrine and mucous secretions. The heterogeneous granules are produced in separate multicellular glands arranged in a series of lobes that lie outside a thick smooth muscle layer enclosing the lumen. Each glandular lobe is surrounded by a thin layer of smooth muscle. Secretions are transported in individual cellular processes that pass through the thick smooth muscle layer and empty into the lumen. Surrounding the lumen is an epithelium containing apocrine secretory cells as well as occasional goblet-type, mucous cells. The combined action of the muscles forces secretions out of the lumen through the penial papilla, onto the external surface of the mammiliform penial gland. Longitudinal muscles extend into the penial papilla enabling its protrusion or retraction. Retraction of the penial papilla following secretion release is thought to create negative pressure beneath the penial gland producing suction adhesion. The visco-elastic properties of the penial gland secretion are qualitatively different from foot mucus and may represent specialization to an adhesive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号