首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biofilm formation of Staphylococcus epidermidis on smooth polymer surfaces has been shown to be mediated by the ica operon. Upon activation of this operon, a polysaccharide intercellular adhesin (PIA) is synthesized that supports bacterial cell-to-cell contacts and triggers the production of thick, multilayered biofilms. Thus, the ica gene cluster represents a genetic determinant that significantly contributes to the virulence of specific Staphylococcus epidermidis strains. PIA synthesis has been reported recently to undergo a phase variation process. In this study, biofilm-forming Staphylococcus epidermidis strains and their PIA-negative phase variants were analysed genetically to investigate the molecular mechanisms of phase variation. We have characterized biofilm-negative variants by Southern hybridization with ica-specific probes, polymerase chain reaction and nucleotide sequencing. The data obtained in these analyses suggested that in approximately 30% of the variants the missing biofilm formation was due to the inactivation of either the icaA or the icaC gene by the insertion of the insertion sequence element IS256. Furthermore, it was shown that the transposition of IS256 into the ica operon is a reversible process. After repeated passages of the PIA-negative insertional mutants, the biofilm-forming phenotype could be restored. Nucleotide sequence analyses of the revertants confirmed the complete excision of IS256, including the initially duplicated 8 bp target sites. These results elucidate, for the first time, a molecular mechanism mediating phase variation in staphylcocci, and they demonstrate that a naturally occurring insertion sequence element is actively involved in the modulation of expression of a Staphylococcus virulence factor.  相似文献   

3.
Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.  相似文献   

4.
Phenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.e. both black and red colonies on Congo Red agar. Black colonies displayed bi-modal electrophoretic mobility distributions at pH 2, but such phenotypic variation was absent in red colonies of the same strain as well as in control strains without phenotypic variation. All red colonies had lost ica and the ability to form biofilms, in contrast to black colonies of the same strain. Real time PCR targeting icaA indicated a reduction in gene copy number within cultures exhibiting phenotypic variation, which correlated with phenotypic variations in biofilm formation and electrophoretic mobility distribution of cells within a culture. Loss of ica was irreversible and independent of the mobile element IS256. Instead, in high frequency switching strains, spontaneous mutations in lexA were found which resulted in deregulation of recA expression, as shown by real time PCR. RecA is involved in genetic deletions and rearrangements and we postulate a model representing a new mechanism of phenotypic variation in clinical isolates of S. epidermidis. This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC.  相似文献   

5.
6.
7.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

8.
The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.  相似文献   

9.
The insertion sequence IS4Bsu1 frequently causes Bacillus subtilis starters for the production of Japanese fermented soybean pasts (natto) to lose the ability to produce poly-gamma-glutamate, the viscous material characteristic of natto. Bacillus subtilis NAFM5, a derivative of a natto starter, has six IS4Bsu1 copies on its chromosome. In this study, we determined all six insertion loci of the insertion sequence (IS). One was located in the coding region of yktD, a putative gene involved in polyketide synthesis. Four were located in non-coding regions between iolR and iolA, between tuaA and lytC, between rapI and orf1 (a potential gene of unknown function), and between ynaE and orf3 (a putative gene similar to thiF), and one resided in an intergenic region between divergent possible orf4 and orf5 genes of unknown function. Here we describe the structural features of these loci and discuss the effects of the IS4Bsu1 insertions on the functions of the target gene and the expression of the downstream genes. In addition, we found that strain NAFM5 and commercial natto starters possess eight to 10 loci of another IS of the IS256 family (designated IS256Bsu1) on their chromosomes. IS256Bus1 appeared active in transposition, potentially causing phenotypic alterations in natto starters like those induced by IS4Bsu1.  相似文献   

10.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.  相似文献   

11.
IS256 is a highly active insertion sequence (IS) element of multiresistant staphylococci and enterococci. Here we show that, in a Staphylococcus epidermidis clinical isolate, as well as in recombinant Staphylococcus aureus and Escherichia coli carrying a single IS256 insertion on a plasmid, IS256 excises as an extrachromosomal circular DNA molecule. First, circles were identified that contained a complete copy of IS256. In this case, the sequence connecting the left and right ends of IS256 was derived from flanking DNA sequences of the parental genetic locus. Second, circle junctions were detected in which one end of IS256 was truncated. Nucleotide sequencing of circle junctions revealed that (i) either end of IS256 can attack the opposite terminus and (ii) the circle junctions vary significantly in size. Upon deletion of the IS256 open reading frame at the 3' end and site-directed mutageneses of the putative DDE motif, circular IS256 molecules were no longer detectable, which implicates the IS256-encoded transposase protein with the circularization of the element.  相似文献   

12.
13.
14.
15.
The insertion sequence IS666 was isolated from Mycobacterium avium strain 101. IS666 is a 1474 bp insertion sequence belonging to the IS256 family, that includes IS6120 from Mycobacterium smegmatis, IS1166 and IS1295 from Rhodococcus sp. IGTS8, IST2 from Thiobacillus ferrooxidans, IS256 from Staphylococcus aureus, and ISRm3 from Rhizobium meliloti. IS666 has 24 bp imperfect inverted repeats that fit the consensus described for the family, and generates 9 bp duplications upon insertion into the host DNA with no apparent specificity in the target sequence. In contrast with its two closest homologues, IS1166 and IS6120, IS666 contains a single ORF that would codify a transposase of 434 aa. IS666 is restricted to M. avium, where it is present in 21% of the isolates in a number ranging between 1 to 7 copies.  相似文献   

16.
Laurent JP  Faske S  Cangelosi GA 《Gene》2002,294(1-2):249-257
An IS3-family insertion element, IS999, was identified in the opportunistic pathogen Mycobacterium avium. The 1347 bp element has 29 bp inverted repeats and two overlapping open reading frames coding for putative transposases. It was detected in the genomes of ten of 12 M. avium isolates examined. Copy numbers ranged from four to 16. IS999 is less stable than IS1245, the most commonly-used marker for typing M. avium isolates. Among 60 colonies picked from a single patient isolate, there were two distinct IS1245 restriction fragment length polymorphism banding patterns compared to eight distinct IS999 patterns (five in one IS1245 group and three in the other). In view of its instability, we asked whether transposition of IS999 might have phenotypic consequences. Nucleotide sequence analysis of insertion sites in four isolates revealed 16 putative structural genes that were variably disrupted by IS999. Insertions into hdhA, a gene that codes for a putative short chain alcohol dehydrogenase, were distributed non-randomly between colony type variants, consistent with phenotypic consequences that exert selective pressure. These observations illustrate the genetic heterogeneity that can exist within populations of M. avium that appear to be homogeneous by IS1245 analysis. IS999 may be a useful marker for tracking, at the sub-strain level, the rapid genetic drift that M. avium isolates undergo in nature and in the laboratory.  相似文献   

17.
Coagulase-negative staphylococci (CoNS) are the most common cause of biofilm-associated sepsis in very low birth weight infants (VLBW). Standard biofilm assays may not predict the pathogenic potential of CoNS since biofilm production is regulated by diverse environmental stimuli. Staphylococcus epidermidis isolated from blood cultures from VLBW infants were evaluated for biofilm production in response to various environmental stimuli, including intravenous solutions and skin preparations. While responses to environmental stimuli were variable for individual isolates and products, some trends were observed. Biofilm production by hospital S. epidermidis isolates (predominantly ica and biofilm-positive) was most commonly increased at 30°C and decreased in the presence of intravenous solutions and moisturisers. Commensals (mainly biofilm-negative and lacking the ica gene) were more often induced to produce biofilm than hospital isolates. These results indicate that biofilm production in S. epidermidis can vary in response to environmental stimuli encountered in the clinical setting, that standard biofilm assays are unlikely to predict clinical outcome, and that harmless skin commensals may be induced to produce biofilm by some of the products used in neonatal units.  相似文献   

18.
Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection.  相似文献   

19.
Resistance to the aminoglycosides gentamicin (Gmr), tobramycin (Tmr) and kanamycin (Kmr) in strains of Staphylococcus aureus isolated in Australia is mediated by the transposon Tn4001. The 1.35 kb inverted repeat of this transposon exhibits many of the characteristics of an insertion sequence and has consequently been designated IS256. Tandem duplication of IS256 contiguous with Tn4001 results in an increase in the level of GmrTmrKmr, thereby implying that the element possesses strong promoter sequences. Both contiguous and independent insertions of IS256 into the staphylococcal chromosome have been observed, the latter suggesting that the element may play a role in molecular rearrangements of the genome.  相似文献   

20.
A new mutagenesis assay system based on the phage lambda cro repressor gene residing on a plasmid was developed. The assay detects mutations in cro that decrease the binding of the repressor to the OR operator in an OR PR-lacZ fusion present in a lambda prophage. Mutations arose spontaneously during growth of E. coli cells harboring cro plasmids at a frequency of 3-6 x 10(-6). Analysis of some 200 cro mutants from several 'wild-type' strains revealed a substantial fraction of 25-70% insertion events caused by transposition of IS elements. Most of the insertions were caused by IS1, but IS5 insertions were observed too. In strains harboring Tn10, IS10 was responsible for most insertions. Restriction nuclease digestion analysis revealed a preference for insertion of IS10 into the C-terminal half of cro, despite the absence of sequences which are known hot spots for Tn10 insertions. The frequency of IS1 insertions into cro decreased 25-60-fold and that of IS10 insertions decreased 200-fold in cells carrying the recA56 mutation, suggesting that RecA is involved in transposition of these elements. During the logarithmic phase of growth, the mutation frequency was constant for at least 22 generations; however, upon continuous incubation at the stationary phase, the mutation frequency gradually increased, yielding a 3-fold increase in the frequency of insertion and a 4-5-fold increase in point mutation. Genomic Southern analysis of chromosomal IS elements in cells which underwent a transposition from the chromosome into the cro plasmid revealed that the number and distribution of IS1 and IS5 were usually unaltered compared to cells which did not undergo a transposition event. In contrast, essentially each IS10 transposition was accompanied by multiple events which led to changes in the number and distribution of chromosomal IS10 elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号