首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects on DNA synthesis in vitro in mouse L929-cell nuclei of differential extraction of DNA polymerases alpha and beta were studied. Removal of all measurable DNA polymerase alpha and 20% of DNA polymerase beta leads to a 40% fall in the replicative DNA synthesis. Removal of 70% of DNA polymerase beta inhibits replicative synthesis by 80%. In all cases the nuclear DNA synthesis is sensitive to N-ethylmaleimide and aCTP (arabinosylcytosine triphosphate), though less so than DNA polymerase alpha. Addition of deoxyribonuclease I to the nuclear incubation leads to synthesis of high-molecular-weight DNA in a repair reaction. This occurs equally in nuclei from non-growing or S-phase cells. The former nuclei lack DNA polymerase alpha and the reaction reflects the sensitivity of DNA polymerase beta to inhibiton by N-ethylmaleimide and aCTP.  相似文献   

2.
M Fry  C W Shearman  G M Martin  L A Loeb 《Biochemistry》1980,19(25):5939-5946
Accuracy of poly[d(A-T)] synthesis catalyzed by chromatin-bound deoxyribonucleic acid (DNA) polymerase beta was measured with several types. A new procedure was developed for the isolation of copied poly[d(A-T)] from chromatin DNA. This method involved in vitro copying of poly[d(A-T)] by native chromatin and subsequent selective fragmentation of chromatin by restriction nucleases, proteinase K, and heat denaturation. The fragmented natural DNA is then separated from the high molecular weight poly[d(A-T)] by gel filtration. The efficacy of DNA removal by this procedure was validated by cesium chloride gradient and nearest-neighbor analysis of the product of the reaction and by measurement of the fidelity of poly[d(A-T)] synthesis by Escherichia coli DNA Pol I contaminated with increasing amounts of DNA. Also, DNA polymerases dissociated from chromatin retain the same accuracy as that of native chromatin. Synthesis of poly[d(A-T)] by chromatin is catalyzed mainly by DNA polymerase-beta. By use of the described technique, we find that the fidelity of this reaction is exceptionally low; approximately one dGTP was incorporated for every thousand complementary nucleotides polymerized.  相似文献   

3.
In a toluene-treated mutant of Escherichia coli K-12 having a temperature-sensitive, conditionally lethal mutation in the structural gene for deoxyribonucleic acid (DNA) ligase, an extensive DNA repair synthesis occurred in X-irradiated cells at the nonpermissive temperature, 42 C. At the permissive temperature, 30 C, nearly normal semiconservative synthesis and limited repair synthesis were observed when DNA ligase was activated by the addition of nicotinamide adenine dinucleotide.  相似文献   

4.
5.
6.
7.
8.
The deoxyribonucleic acid (DNA) polymerase activities in Bacillus subtilis strains Marburg 168 (thy-trp2) and D22, a DNA polymerase I-deficient mutant, were measured at various stages of sporulation. The DNA polymerase I activity, which had decreased after the exponential growth, began to increase at the early stage of sporulation, reached a maximum and then again decreased. The activity of neither DNA polymerase II nor III was observed to change so drastically as that of DNA polymerase I during sporulation. The incorporation of [3H]deoxythymidine 5'-triphosphate ([3H]dTTP) into Brij 58-treated permeable cells increased during sporulation. The stimulation of [3H]dTTP incorporation into the cells by irradiation with ultraviolet light was also observed to coincide with DNA polymerase I activity. In strain D22 the activities of DNA polymerase II and III were almost constant with time. Neither change of [3H]dTTP incorporation into Brij 58-treated cells nor stimulation of incorporation by irradiation with ultraviolet light was observed.  相似文献   

9.
Deoxyribonucleic acid polymerase-beta (EC 2.7.7.7) FROM THE Novikoff hepatoma has been purified over 200 000-fold (based on the increase in specific activity), by ammonium sulfate fractionation and chromatography on DEAE-Sephadex, phosphocellulose, hydroxylapatite, and DNA-cellulose. The enzyme is remarkably stable through all stages of purification until DNA-cellulose chromatography when it must be kept in buffers containing 0.5 M NaCl and 1 mg/ml bovine serum albumin for stability. The enzyme appears to be homogeneous as evidenced by a single stainable band when subjected to electrophoresis in polyacrylamide gels of different porosity. The stainable band corresponds to the DNA polymerase as determined by slicing sister gels and assaying for enzyme activity. The specific activity of the homogeneous preparation is about 60 000 units/mg. The enzyme lacks detectable exonuclease or endonuclease activity. It has a molecular weight of 32 000 as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis. In sucrose gradients, the molecular weight is estimated at 31 000. The isoelectric point of the hydroxylapatite fraction enzyme is 8.5. The Novikoff beta-polymerase requires all four deoxyribonucleoside triphosphates, primer-template, and a divalent cation for maximal activity. The apparent Km for total deoxyribonucleoside triphosphate is 7-8 muM and for DNA 125 mug/ml. Activated DNA, rendered 7% acid soluble by DNase I, is the preferred primer-template, although a number of synthetic polynucleotides can by efficiently utilized, particularly in the presence of Mm2+ optimum is 7 mM; the Mn2+ optimum is 1 mM. The pH optimum is 8.4 in Tris-HCl or 9.2 in glycine buffer. The beta-polymerase is sstimulated about twofold by NaCl or KCl at an optimum of 50-100 MM, and the enzyme maintains considerable activity at high ionic strengths. The DNA polymerase is inhibited by ethanol, acetone, and a variety of known polymerase inhibitors. Glycols stimulate the enzyme as does spermine or spermidine. Unlike most beta-polymerases, the Novikoff enzyme is moderately sensitive to N-ethylmaleimide.  相似文献   

10.
DNA synthesis and DNA polymerase activity have been measured in terminally differentiating cardiac muscle of the rat. Incorporation of [3H]thymidine into DNA essentially ceases by the 17th day of postnatal development. Cardiac muscle of neonatal rats contains at least two molecular species of DNA polymerase: a 3.5 S DNA polymerase that can be extracted from nuclei with 0.2 m potassium phosphate and a 6 to 8 S soluble cytoplasmic DNA polymerase. The nuclear DNA polymerase in crude extracts has a pH optimum of 9.0 and is more active with native DNA than with denatured DNA as the primer-template. The cytoplasmic DNA polymerase in crude extracts has a pH optimum of 7.5 and is more active with denatured DNA. The activity of the 6 to 8 S cytoplasmic DNA polymerase decreases 80-fold from day 1 to day 17 after birth, which correlates temporally with the reduced rate of DNA synthesis. The activity of the 3.5 S nuclear DNA polymerase remains relatively constant throughout postnatal development. Mixing experiments (assay of neonatal enzyme extracts with adult enzyme extracts) gave additive results, suggesting that the decline in 6 to 8 S DNA polymerase activity apparently is not due to the presence of absence of soluble activators or inhibitors at different times during development. These studies may provide a system which can be used to investigate the control of DNA synthesis and cellular proliferation during the terminal stages of cardiac muscle differentiation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号