首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic oxygen production by phytoplankton and community respiration in the Indian sector of the Antarctic Ocean were estimated from changes in oxygen concentrations in light and dark bottles. Gross production varied between 0.1 and 5.1 µmol O2 l-1 day-1. In the same water, community respiration (the sum of oxygen consumption by heterotrophs and phytoplankton) was 0.4-3.6 µmol O2 l-1 day-1, which accounted for 47-343% of the gross production. Algal and heterotrophic respirations were distinguished using some assumptions. These estimates showed that heterotrophic respiration accounted for most of the community respiration (70-91% depending upon the assumptions), indicating that heterotrophic respiration plays an important role in the mineralization of phytoplankton production in the surveyed sea area. Gross production rate correlated with chlorophyll a concentration, showing that the photosynthetic production rate of oxygen depends on the abundance of phytoplankton. Moreover, there was a significant relationship between gross production and community respiration rates. These regression equations suggested that negative net production occurred under the usually low concentration of chlorophyll observed in the Indian sector of the Antarctic Ocean. Hence, the net exchange of carbon dioxide due to biological processes through the sea surface seemed to be not as large as expected in the Antarctic Ocean, although the number of data were limited at this stage.  相似文献   

2.
Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.  相似文献   

3.
This study documents horizontal distribution and demography of Antarctic krill (Euphausia superba) from the Southern Ocean during January–March 2008. The cruise predominantly occurred in CCAMLR Subarea 48.6, where knowledge about the ecosystem is limited. E. superba were not found north of 52°S. The biomass, estimated from trawl catches, was highest (63.09 g/m2) at a station 680 km southeast of Bouvetøya and at two stations 1,400 and 600 km southeast and southwest of Bouvetøya, 54.67 and 61.38 g/m2, respectively. Body length ranged from 19 to 61 mm (N = 8,538), with a mean of 42.0 ± 6.4 mm (SD). The overall sex ratio was 1:1, 46.2% males (13.2% adults and 33.0% subadults), 46.1% females (33.6% adults and 12.5% subadults), while 7.5% were juveniles. Trawl stations dominated by adults were found west and north of Bouvetøya. Stations with high proportions of subadults and juveniles were mainly found southeast of the island. Four cluster groups were differentiated: analyzing data on krill sex proportions, maturity stages, hydrography, nutrients and chlorophyll concentrations. Two groups represented stations located in the northern part of the study area, where E. superba were absent; water temperatures were higher and the nutrient concentrations lower compared to the groups where E. superba were present. This study shows that bathymetric features like the North Weddell Ridge including Bouvetøya are important for concentrating krill probably due to water mass characteristics and advective processes which influence regional krill demography. The southern regions of CCAMLR sector 48.6 are essential for understanding regional krill recruitment and production.  相似文献   

4.
The results of gut evacuation experiments performed on Antarctic copepods during the austral spring are presented and discussed. Four species of large copepods commonly occurring in the Indian sector of the Antarctic Ocean were studied: Calanus propinquus, Calanoides acutus, Rhincalanus gigas and Pleuromamma robusta. For each species two experiments were carried out, one in daytime and one in night-time, except for Calanoides acutus, which was only studied at night. P. robusta showed pigment gut retention in all experiments. The results showed that all species studied had a longer gut passage time than that previously recorded and that gut evacuation rate appears to decrease during daytime. Accepted: 1 October 1998  相似文献   

5.
Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m?3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a ( \(P_{ \hbox{max} }^{*}\) ), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.  相似文献   

6.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

7.
Net sampling and continuous acoustic measurements within the Antarctic Polar Frontal Zone (APFZ) and in the vicinity of the Prince Edward Islands were conducted during austral autumn (April/May) 1997 to describe the composition and distribution of macrozooplankton and micronekton, and to investigate their relations to the prevailing oceanographic regime in the area. Two major circulation patterns associated with the Subantarctic (SAF) and Antarctic Polar (APF) Fronts existed in the oceanic environment surrounding the Prince Edward Islands, promoting high cross-frontal mixing both upstream and downstream of the islands. Average abundance and biomass of macroplankton/micronekton in the top 300-m layer were 21 ind. 1000 m−3 and 467 mg DW 1000 m−3, respectively. Pelagic crustaceans (euphausiids and amphipods), fish, chaetognaths and gelatinous zooplankton dominated numerically and by biomass. Continuous acoustic measurements displayed elevated pelagic biomass at the SAF and APF. Although four groupings of stations were identified using cluster analysis, a single macroplankton/micronekton community was recognized in the top 300-m layer throughout the offshore area of the APFZ. A modification of the APFZ community was observed within the inter-island region. Subantarctic species dominated zooplankton samples throughout the APFZ, although subtropical species were also well represented at stations occupied in the northern region of the APFZ. A biological response reflected in macroplankton community composition, resulting from an extensive cross-frontal mixing, was observed within the APFZ around the Prince Edward Islands. Accepted: 27 November 1999  相似文献   

8.
Mesozooplankton community structure and grazing impact were investigated at 13 stations in the Polar Frontal Zone during the second Marion Offshore Variability Ecosystem Study (MOVES II), conducted during April 2002. Total integrated chl- a biomass ranged between 11.17 and 28.34 mg chl- a m-2 and was always dominated by nano- and picophytoplankton (<20 µm). Throughout the study, small copepods, mainly Oithona similis and Ctenocalanus vanus, numerically dominated the mesozooplankton community, composing up to 85% (range 30-85%) of the total abundance. Grazing activity of the four most abundant copepods ( O. similis, C. vanus, Calanus simillimus and Clausocalanus spp.), constituting up to 93% of total mesozooplankton abundance, was investigated using the gut fluorescence technique. Results of gut fluorescence analyses indicated that Calanus simillimus and Clausocalanus spp. exhibited diel variability in gut pigments with maximum values recorded at night. In contrast, O. similis and Ctenocalanus vanus did not demonstrate diel variation in gut pigment contents. Ingestion rates of the four copepods ranged from 23.23 to 1462,02 ng(pigm.)ind-1day-1. The combined grazing impact of the four copepods ranged between 1 and 36% of the phytoplankton standing stock per day, with the highest daily impact occurring at stations occupied in the vicinity of the Antarctic Polar Front (~35.86% at station 23). Among the copepods, O. similis and Ctenocalanus vanus represented the most important consumers of phytoplankton biomass, collectively responsible for up to 89% (range 15-89%) of the total daily grazing impact. Carbon specific ingestion rates of the copepods varied between 42 and 320% body carbon per day.  相似文献   

9.
The horizontal and vertical distributions of fish were examined off Lützow-Holm Bay in the Indian Ocean sector of the Southern Ocean during midnight sun in January 2005. Fish were sampled from six discrete depth layers (0–2,000 m). The most abundant fish in layers from the surface to 200 m were larval stages of Electrona antarctica and Notolepis coatsi. In layers from 200 to 2,000 m, fish assemblages were relatively uniform among all stations and were dominated by E. antarctica (juvenile–subadult), Cyclothone microdon, and Bathylagus antarcticus. Cluster analysis revealed three epipelagic communities related to water temperature and salinity. An ontogenetic habitat shift to deeper layers was apparent for E. antarctica, N. coatsi, and B. antarcticus. Preferences for warm waters were observed in E. antarctica (larvae) and N. coatsi (preflexion to flexion larvae), although they were distributed across a broad range of temperature and salinity in epipelagic zones.  相似文献   

10.
Microphytoplankton distribution in the Atlantic sector of theSouthern Ocean was investigated along a transect during theSAAMES II cruise undertaken in late austral summer (January/February) 1993. Samples were collected at 60 km intervals between34 and 70°S for the analysis of mineral nutrients, and theidentification and enumeration of microphytoplankton. Peaksin microphytoplankton abundance were recorded in the neriticwaters of Africa and Antarctica, at all major oceanic fronts,and in the marginal ice zone (MIZ). Partial correlation analysisindicated that 45% of the total variance associated with microphytoplanktonabundance could be explained by silicate and phosphate concentrations,while temperature accounted for 65% (P<0.001). Cluster andordination analyses identified two major groups of stations,one north and one south of the Subantarctic Front (SAF). Thisdivision appears to be related to differences in temperatureand silicate concentrations. Each region comprised distinctmicrophytoplankton subgroups associated with specific watermasses or hydrological features. Indicator species could beidentified for some water masses. In the MIZ, microphytoplanktonspecies composition and succession were strongly affected bysea-ice throughout the summer.  相似文献   

11.
Summary Water samples collected in the southwestern Indian Ocean between Africa and Antarctica in March 1980 were analyzed quantitatively for phytoplankton. Diatoms dominate the phytoplankton in this region and their numbers generally increase southward with peaks of abundance in both the northern Antarctic Zone and south of the Antarctic Divergence. Average cell numbers (i.e., 6.1×105 diatoms l-1 in the Antarctic Zone) are comparable to maximum numbers previously reported for the Southern Ocean. Dinoflagellates, flagellates and monads occur in highest concentrations north of the Polar Front. Their numbers are somewhat reduced south of the Antarctic Divergence, and are lowest in the Antarctic Zone. Various diatom assemblages are characteristic of different latitudinal zones. Waters north of and in the vicinity of the Polar Front are rich in the Nitzschia, Pseudonitzschia group of species. In the Antarctic Zone, Nitzschia nana and Dactyliosolen tenuijunctus dominate. Nitzschia species of the Fragilariopsis group are most numerous at stations south of the Antarctic Divergence. Striking differences are noted between the species compositions of quantitative and net-haul samples. A few nanoplanktonic diatoms (e.g. Nitzschia nana and single cells of Chaetoceros spp.) and the weakly silicified Dactyliosolen tenuijunctus, which are dominant in the quantitative samples, are either entirely absent or present only as solitary cells in the net collections.  相似文献   

12.
13.
The dynamics of protozoa were investigated during two cruises in the Indian sector of the Southern Ocean: the early spring ANTARES 3 cruise (28 September to 8 November 1995) and the late summer ANTARES 2 cruise (6 February to 8 March 1994). Biomass and feeding activity of protozoa were measured as well as the biomass of their potential prey – bacteria and phototrophic flagellates – along the 62°E meridian. The sampling grid extended from the Polar Frontal region to the Coastal and Continental Shelf Zone in late summer and to the ice edge in spring, crossing the Antarctic Divergence. Protozoan biomass, although low in absolute terms, contributed 30% and 20% to the total microbial biomass (bacteria, phytoplankton and protozoa) in early spring and late summer, respectively. Nanoprotozoa dominated the total protozoan biomass. The geographical and seasonal distribution of protozoan biomass was correlated with that of phototrophic flagellates. However, bacterial and phototrophic flagellate biomass were inversely correlated. Phototrophic flagellates dominated in the Sea Ice Zone whereas bacteria were predominant at the end of summer in the Polar Frontal region and Coastal and Continental Shelf Zone. Furthermore, bacteria were the most important component of the microbial community (57% of the total microbial biomass) in late summer. Phototrophic flagellates were ingested by both nano-and microprotozoa. In contrast, bacteria were only ingested by nanoprotozoa. Protozoa controlled up to 90% of the daily bacterial production over the period examined. The spring daily protozoan ingestion controlled more than 100% of daily phototrophic flagellate production. This control was less strong at the end of summer when protozoan grazing controlled 42% of the daily phototrophic flagellate production. Accepted: 30 October 1999  相似文献   

14.
Microzooplankton grazing was investigated in surface waters of the Indo-Pacific and Atlantic sectors of the Southern Ocean by the dilution method. Phytoplankton growth varied mainly between 0.1 and 0.4 day−1, and microzooplankton grazing between 0.0 and 0.3 day−1. Great fluctuations in phytoplankton growth rate were observed at one station within 3 weeks and between closely spaced stations. Microzooplankton grazing rates were similar to phytoplankton growth rate despite the variation of phytoplankton growth rates, although in some cases, phytoplankton growth overwhelmed microzooplankton grazing. These observations suggest that microzooplankton are the main consumers of primary producers, and that steady state between phytoplankton growth and microzooplankton grazing is usually established in the Southern Ocean in austral summer. Received: 5 November 1996 / Accepted: 4 March 1997  相似文献   

15.
Ecological structure of a pelagic seabird community in the Southern Ocean   总被引:2,自引:0,他引:2  
Summary The pelagic avifauna (excluding penguins) of the African sector (30°S–70°S, 20°W–40°E) of the Southern Ocean is described quantitatively, based on 3,005 10-min observation of seabirds during seven oceanic cruises in April 1979 – April 1980. The avifauna is characterized according to species richness, diversity, abundance and biomass. These indices are correlated with groups of birds ordered into principal diet and feeding-method classes. Birds eating either plankton, cephalopods or a mixed diet accounted for 51, 23 and 22% of the total avifaunal abundance and 22, 49 and 25% of the total biomass, respectively. Piscivores were represented poorly. Planktivores were especially abundant south of the Antarctic Convergence and, to a lesser extent, at the sub-Tropical Convergence. Cephalopod-eaters were most abundant north of the sub-Tropical Convergence. The greatest abundance of omnivores occurred where planktivores and cephalopod-eaters were least abundant. The distribution of the planktivores and cephalopodeaters is related tentatively to the availability of the birds' principal prey.  相似文献   

16.
The association between the variability of phytoplankton biomass and community structure and the distribution of water masses around the Antarctic Peninsula were examined during austral summer 1993. Phytoplankton biomass showed high variability, and was dominated by an autotrophic flagellate (Cryptomonas sp.) that represented, on average, 91% of total phytoplankton biomass. The lowest phytoplankton biomasses were associated with the strongly mixed, saline, cold waters characteristic of the Weddell Sea water mass, and with the waters influenced by ice melt from the Bellingshausen Sea. The highest biomasses were found in the confluence of these water masses, where a front develops. Community composition also differed among water masses, with eukariotic picoplankton and diatoms having their highest relative contribution to community biomass in stations with Bellingshausen Sea and Weddell Sea water masses, whereas the abundance of Cryptomonas sp. was highest at the confluence of these waters. These results indicate that mesoscale processes, that determine water mass distribution, are of paramount importance in controlling the time and space variability of Antarctic phytoplankton.  相似文献   

17.
The photosynthesis-irradiance relationships (P-I curves) ofnatural plankton samples were studied in the Weddell Sea ice-edgezone, between Elephant Island and South Orkney Islands, duringthe austral summer of 1988–89. Three water bodies weredistinguished in the region: Bellingshausen Sea waters modifiedafter flowing through Drake Passage and Bransfield Strait, WeddellSea waters and Weddell Sea waters modified by melting. The stationssituated in modified Bellingshausen waters showed a net phytoplanktoncomposition which was different from that of the other two waterbodies. Weddell Sea waters and Weddell Sea waters modified bymelting of sea ice had the same net phytoplankton composition.In the area of modified Weddell Sea waters, there was an accumulationof phytoplankton in the upper 40 m (>4 mg Chl m–1).pB, and  相似文献   

18.
Horizontal distributions of coccolithophores were observed in sea surface water samples collected on the RV Polarstern between 27 February and 10 April, 2001, in the Pacific sector of the Southern Ocean (Bellingshausen and Amundsen Seas). These samples were analyzed to gain information about the distribution of coccolithophores in relation to the oceanic fronts of the Southern Ocean. A total of fifteen species of coccolithophores were identified, showing cell abundances of up to 67 × 103 cells/l down to 63°S. Emiliania huxleyi was the most abundant taxon, always accounting for more than 85% of the assemblage. The second most abundant species was Calcidiscus leptoporus, with values lower than 7%. Cell density increases significantly in both the Subantarctic and Polar Fronts (155 and 151 × 103 cells/l, respectively), decreasing abruptly in the intervening Polar Frontal Zone and to the south of the Polar Front. Although temperature at high latitudes is the main factor controlling the biogeographical distribution of coccolithophores, at the regional level (Southern Ocean) the frontal systems, and consequently nutrient distribution, play a crucial role.  相似文献   

19.
Aim Deep‐sea pelagic diversity is poorly understood. Local (SL) and regional (SR) ichthyonekton species richness are presented and analysed with respect to local and regional environmental factors, and biogeographical processes. Location Sixty‐six stations from the Atlantic Ocean and adjacent sector of the Southern Ocean, 65° N to 57° S. Methods Estimation of SL by means of rarefaction. Stepwise evaluation of SL and SR relationships by means of the second‐order corrected Akaike information criterion (AICc) after locally weighted scatterplot smoothing (LOESS) and linear fitting, analysis of saturation effects by means of slopes of species accumulation curves (log–log plots). Results Latitudinal gradients were present for SL and SR, and were asymmetric between the Northern and Southern hemispheres. Relatively low species richness was encountered for the Southern Ocean. Asymmetry at the regional level by means of higher SR was attributed to area effects in the South Atlantic. Log–log plots indicated saturation of local assemblages and dependence on environmental factors. SL was related to productivity; this relationship was hump‐shaped. SR was positively related to area size and negatively to seasonality of production. Biogeographical effects were indicated in that SR peaks coincided with overlap zones of boreal and tropical faunas as a consequence of historical faunal exchange processes. Main conclusions The stepwise approach allowed for distinction between effects of area size, productivity and biogeographical processes on diversity at local and regional scales. Productivity in particular is important in two ways. At the local scale, the link of productivity to SL is explained by a successional‐functional hypothesis of resource utilization, whereas the seasonality effect for SR reinforces the hypothesis of dependence of deep‐sea fishes on seasonality of production through changes of life‐history traits. The causes of low Antarctic faunal diversity remained unresolved.  相似文献   

20.
Data on the size and age composition of Antarctic krill (Euphausia superba Dana) were collected in the Cooperation and Cosmonaut Seas (Indian sector of the Southern Ocean) from 1985 to 1990. The estimation of the age-dependent annual extinction rate of krill [=1-exp(-M)] was obtained using the Zikov and Slepokurov (1982) approach and results were fitted by a parabolic equation. The coefficients of instantaneous natural mortality (M) of E. superba derived with this approach range from 0.52 during the maturation period, to 1.1–2.41 during the first and last years of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号