共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
B. Shipley 《Plant, cell & environment》2000,23(11):1207-1216
A total of 244 plants from two species, Lythrum salicaria and Epilobium glandulosum, were grown individually in hydroponic sand culture from seed for 36 d. Until day 27 all plants experienced an irradiance of 550 μmol m?2 s?1 PFD and on day 27 half of the plants were subjected to a neutral shade treatment in which irradiance was reduced to 100 μmol m?2 s?1 photon fluy density (PFD). Measures of relative growth rate, net assimilation rate, specific leaf area, biomass partitioning to leaves, roots, structural tissues (i.e. stems, petioles and inflorescences) and tissue density were obtained from intensive harvests three or four times per day. The shade treatment caused an immediate decrease in relative growth rate and net assimilation rate. Within hours the specific leaf area of the shaded plants increased and leaf tissue density decreased, thus partially offsetting the decrease in relative growth rate. Biomass partitioning was not affected. 相似文献
3.
Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species 总被引:12,自引:4,他引:12
B. R. Loveys I. Scheurwater T. L. Pons A. H. Fitter & O. K. Atkin 《Plant, cell & environment》2002,25(8):975-988
We examined the effect of growth temperature on the underlying components of growth in a range of inherently fast‐ and slow‐growing plant species. Plants were grown hydroponically at constant 18, 23 and 28 °C. Growth analysis was conducted on 16 contrasting plant species, with whole plant gas exchange being performed on six of the 16 species. Inter‐specific variations in specific leaf area (SLA) were important in determining variations in relative growth rate (RGR) amongst the species at 23 and 28 °C but were not related to variations in RGR at 18 °C. When grown at 18 °C, net assimilation rate (NAR) became more important than SLA for explaining variations in RGR. Variations in whole shoot photosynthesis and carbon concentration could not explain the importance of NAR in determining RGR at the lower temperatures. Rather, variations in the degree to which whole plant respiration per unit leaf area acclimated to the different growth temperatures were responsible. Plants grown at 28 °C used a greater proportion of their daily fixed carbon in respiration than did the 18 and 23 °C‐grown plants. It is concluded that the relative importance of the underlying components of growth are influenced by growth temperature, and the degree of acclimation of respiration is of central importance to the greater role played by NAR in determining variations in RGR at declining growth temperatures. 相似文献
4.
Tadaki Hirose 《Physiologia plantarum》1988,72(1):185-189
The relationship between the relative growth rate (RGR) and the nitrogen concentration of the whole plant (PNC) was analyzed by using experimentally determined relations (1) between the PNC and the fraction of dry matter (LWR) and nitrogen in leaves, (2) between the specific leaf area (SLA) and the leaf nitrogen concentration (LNC) and (3) between the net assimilation rate (NAR) and the LNC on an area basis. A strong dependence of RGR on nitrogen concentration resulted from the increase in NAR, LWR and SLA with increasing PNC. A curvilinear relationship between RGR and PNC gave an optimum curve for nitrogen productivity against PNC. 相似文献
5.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1 ) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics. 相似文献
6.
UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps 总被引:3,自引:0,他引:3
Donald T. Krizek George F. Kramer Abha Upadhyaya Roman M. Mirecki 《Physiologia plantarum》1993,88(2):350-358
UV-B-sensitive (Poinsett) and -insensitive (Ashley) cultivars of cucumber ( Cucumis sativus L.) were grown in growth chambers at 600 μmol m−2 s−1 of photosynthetically active radiation provided by metal halide (MH) or high pressure sodium/deluxe (HPS/DX) lamps. Plants were irradiated 15 days from seeding for 6 h per day under 18. 2 kJ m−2 day−1 of biologically effective UV-B (UV-BBE ) radiation. One of the most pronounced effects of UV-B was a 27 to 78% increase in phenylalanine ammonialyase (PAL) activity. UV-B also increased total polyamines. Catalase and superoxide dismutase varied greatly in their response to UV-B. There were no interactive effects on PAL or catalase activity, or total polyamines. There was a UV × PAR source interaction for superoxide dismutase activity. UV-B increased chlorosis and decreased height, dry weight and leaf area. Stem elongation, biomass production, leaf enlargement and chlorosis were greater under HPS/DX lamps than under MH lamps. Chlorosis was greater in Poinsett than in Ashley and in lower leaves than in upper ones. Aside from chlorosis, there were no interactive effects of UV-B, PAR source or cultivar on any of the growth parameters measured, suggesting that the growth response of cucumber seedlings to UV-B is unaffected by PAR source or cultivar. Similarly, except for SOD activity, the biochemical response to UV-B was also not influenced by PAR source or cultivar. 相似文献
7.
Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley 总被引:2,自引:0,他引:2
Previous results in our laboratory indicated that a reduced Mn concentration in the leaves of barley was highly correlated with the reduced relative growth and net assimilation rates of salt-stressed plants. If Mn deficiency limits the growth of salt-stressed barley, then increasing leaf Mn concentrations should increase growth. In the present study, the effect of supplemental Mn on the growth of salt-stressed barley ( Hordeum vulgare L. cv. CM 72) was tested to determine if a salinity-induced Mn deficiency was limiting growth. Plants were salinized with 125 mol m−3 NaCl and 9.6 mol m−3 CaCl2 . Supplemental Mn was applied in 2 ways: 1) by increasing the Mn concentration in the solution culture and 2) by spraying Mn solutions directly onto the leaves. Growth was markedly inhibited at this salinity level. Dry matter production was increased 100% in salt-stressed plants treated with supplemental Mn to about 32% of the level of nonsalinized controls. The optimum solution culture concentration was 2.0 mmol m−3 , and the optimum concentration applied to the leaves was 5.0 mol m−3 . Supplemental Mn did not affect the growth of control plants. Further experiments showed that supplemental Mn increased Mn concentrations and uptake to the shoot. Supplemental Mn increased the relative growth rate of salt-stressed plants and this increase was attributed to an increase in the net assimilation rate; there were no significant effects on the leaf area ratio. Supplemental Mn also increased the net photosynthetic rate of salt-stressed plants. The data support the hypothesis that salinity induced a Mn deficiency in the shoot, which partially reduced photosynthetic rates and growth. 相似文献
8.
Effects of sodium, potassium and calcium on salt-stressed barley. I. Growth analysis 总被引:4,自引:0,他引:4
Barley ( Hordeum vulgare L. cv. CM 72) was grown for a 28-day period and stressed with treatments of 125 mol m−3 NaCl or KC1 with low Ca2+ (0.4 mol m−3 Ca2+ ) or high Ca2+ (10 mol m−3 Ca2+ ). Plants were harvested periodically so that relative growth rate (RGR), net assimilation rate (NAR) and leaf area ratio (LAR) could be calculated using the functional approach to plant growth analysis. Relative growth rate declined with time for all treatments, including controls. Salinity inhibited RGR relative to control values by day 10. High Ca2+ improved the growth of salt-stressed plants in both NaCl-salinity and KCl-salinity. KC1 proved more toxic than NaCl, especially for KCI-salinity plants with low Ca2+ , which died by day 28. Net assimilation rate, but not LAR, was highly correlated with RGR for all treatments. This indicates that the photosynthetic-assimilatory machinery was limiting RGR and not the leaf area of the plant. 相似文献
9.
Abstract: The growth and reproduction of Japanese forbs ( Artemisia princeps and Piantago asiatica ) and grasses ( Digitaria ad-scendens and Eleusine indica ) treated to 25 tramplings (3 g m-2 ) per week were investigated in relation to the toughness (tensile strength) of organs. The perennial erect forb, A. princeps , was the most sensitive to trampling in terms of a remarkable depression of plant size and relative growth rate (RGR). RGR and net assimilation rate (NAR) of trampled A. princeps were negative. This was promoted by a loss of organs due to a reduced toughness of organs following trampling. In contrast to this species which did not flower after trampling, the perennial rosette forb, P. asiatica , maintained its plant biomass, NAR, RGR and reproduction under trampling because of tougher organs. However, NAR without trampling was lower in P. asiatica due to a larger leaf dry mass per leaf area (LMA), which could contribute to leaf toughness under trampling. The annual tussock grass, D. adscendens , which has a greater RGR than that of another grass, E. indica , without trampling was intolerant to trampling in terms of decreased biomass and RGR under trampling due to more sensitive organs, although it maintained an ability to reproduce. On the other hand, E. indica showed a marked trampling tolerance, with hardly reduced plant biomass and RGR. This species showed increased toughness of organs when trampled and frequently formed inflorescences in the growing period and produced similar biomass allocation to reproductive organs to untrarnpled plants. Between the grasses, RGR without trampling was slower in E. indica , partly because of its larger LMA. These results suggest that plants face a dilemma between trampling tolerance and efficient assimilative capacity and/or growth rate. 相似文献
10.
Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic ‘wound’ responses, which occur independently of the short-distance or direct wound responses. 相似文献
11.
J. J. C. M. VAN ARENDONK G. J. NIEMANN J. J. BOON H. LAMBERS 《Plant, cell & environment》1997,20(7):881-897
Previous experiments have shown that the anatomy and chemical composition of leaves of inherently fast- and slow-growing grass species, grown at non-limiting nitrogen supply, differ systematically. The present experiment was carried out to investigate whether these differences persist when the plants are grown at an intermediate or a very low nitrogen supply. To this end, the inherently fast-growing Poa annua L. and Poa trivialis L., and the inherently slow-growing Poa compressa L. and Poa pratensis (L.) Schreb. were grown hydroponically at three levels of nitrate supply: at optimum (RGRmax) and at relative addition rates of 100 and 50 mmol N (mol N)?1 d?1 (RAR100 and RAR50), respectively. As expected, at the lowest N supply, the potentially fast-growing species grew at the same rate as the inherently slow-growing ones. Similarly, the differences in leaf area ratio (LAR, leaf area:total dry mass), specific leaf area (SLA, leaf arear:leaf dry mass) and leaf mass ratio (LMR, leaf dry mass:total dry mass) disappeared. Under optimal conditions, the fast-growing species differed from the slow-growing ones in that they had a higher N concentration. There were no significant differences in C concentration. With decreasing N supply, the total N concentration decreased and the differences between the species disappeared. The total C concentration increased for the fast-growing species and decreased for the slow-growing ones, i.e. the small, but insignificant, difference in C concentration between the species at RGRmax increased with decreasing N supply. The chemical composition of the leaves at low N supply, analysed in more detail by pyrolysis–mass spectrometry, showed an increase in the relative amounts of guaiacyl lignin, cellulose and hemicellulose, whereas those of syringyl lignin and protein decreased. The anatomy and morphology of the leaves of the four grass species differing in RGRmax were analysed by image-processing analysis. The proportion of the total volume occupied by mesophyll plus intercellular spaces and epidermis did not correlate with the amount of leaf mass per unit leaf area (specific leaf mass, SLM) at different N supply. The higher SLM at low N supply was caused partly by a high proportion of non-veinal sclerenchymatic cells per cross-section and partly by the smaller volume of epidermal cells. We conclude that the decrease in relative growth rate (and increase in SLM) at decreasing N supply is partly due to chemical and anatomical changes. The differences between the fast- and slow-growing grass species at an optimum nutrient supply diminished when plants were growing at a limiting nitrogen supply. 相似文献
12.
Growth and ion accumulation of two rapid-cycling Brassica species differing in salt tolerance 总被引:1,自引:0,他引:1
The response of two rapid-cycling Brassica species differing in tolerance to seawater salinity was studied over a period of 24 days. In response to 8 dS m−1 salinity, the two Brassica species showed clear differences in the changes in relative growth rate (RGR), net assimilation rate (NAR) and leaf area
ratio (LAR). The RGR of B. napus was slightly reduced by salinity, wheareas the RGR of B. carinata was largely reduced in the early stages of salinization. LAR of B. napus was affected by salinity in the later stages of growth and significantly correlated with the reduction in RGR. On the other
hand, the NAR of B. carinata was decreased by salinity, corresponding to the decrease of the RGR of B. carinata. The NAR of B. napus was not significantly affected by salinity according to analysis of covariance. The shoot concentrations of Na, Mg and Cl
increased while the concentrations of K and Ca decreased sharply during the first 5 days of salinization; subsequently, all
ion concentrations remained relatively constant. The concentrations of Na, K, Ca, Mg and Cl in the root were similarly affected
by salinity. There were no significant differences of ion concentrations between species that could be related to the differences
in salt tolerance. Thus, the differences in salt tolerance between species can not be related to differences in specific-ion
effects, but may be related to some factor that reduces the NAR of B. carinata during the early stages of growth. 相似文献
13.
Seedlings of Bidens cernua L. emerged when mean air temperature was 17.0±1.3 °C. The highest net photosynthetic rate (P
N), 13.8±0.8 μmol(CO2) m−2 s−1, was monitored during the vegetative period (May–August), decreasing on an average by 50 % during flowering (August–September)
and during fruiting (September–November) phases. The senescence phase (October–November) was characterised by 79, 58, and
18 % decrease of P
N, chlorophyll content, and leaf area (LA), respectively, from the maximum values. The time span from seedling emergence to
the end of fruiting phase was 202 d. The total plant biomass was 1.58±0.05 g of which 81 % was aboveground plant portion.
The total dry mass relative growth rate averaged over the assimilation period was 0.0804±0.0002 kg kg−1 d−1, and it was correlated to both the net assimilation rate (NAR) and the leaf area ratio (LAR). 相似文献
14.
Erythrina variegata Lam. seedlings were grown under water stress (Ψ = -3.2 MPa) and subsequently sprayed with triacontanol (Tria). Water stress
significantly reduced shoot growth rate, while roots continued to grow. Content of chlorophyll (Chl) a decreased more than that of Chl b. Water stress also reduced photosynthetic activity of chloroplasts as measured by Chl fluorescence induction. Stress effect
was identified at the oxidation site of photosystem (PS) 2 prior to the hydroxylamine donating site and perhaps close to or
after the diphenylcarbazide donating site. The loss of O2 evolving thylakoid polypeptides (33, 23, 17 kDa) and the large (55 kDa) and small (15 kDa) subunits of ribulose-1,5-bisphosphate
carboxylase (RuBPC) were found in water stressed seedlings. The reduction in RuBPC activity was accompanied by reduction of
CO2 fixation and stomatal conductance. All photosynthetic parameters were improved by Tria.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
15.
Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO2). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure). 相似文献
16.
Viola Müller Christa Lankes Benno F. Zimmermann Georg Noga Mauricio Hunsche 《Journal of plant physiology》2013
In the present study we aimed to investigate the relevance of either N, P or K supply for herb and leaf yield and for centelloside concentrations in Centella asiatica L. Urban leaves. In this regard, we elucidated the causal relationship between assimilation rate, leaf N, P and K concentrations, herb and leaf production, and centelloside accumulation. The experiments were conducted consecutively in a greenhouse where C. asiatica was grown in hydroponic culture and fertigated with nutrient solutions at either 0, 30, 60, 100 or 150% of the N, P or K amount in a standard Hoagland solution. In general, the increase in N, P or K supply enhanced assimilation rate and herb and leaf yield. However, exceeding specific thresholds, the high availability of one single nutrient caused lower leaf N concentrations and a decline in assimilation rate and plant growth. Irrespective of N, P and K supply, the leaf centelloside concentrations were negatively associated with herb and leaf yield, which is in accordance with the assumptions of the carbon/nutrient balance and the growth differentiation balance hypotheses. Moreover, we found strong negative correlations between saponins and leaf N concentrations, while the respective sapogenins were negatively correlated with K concentrations. Using C. asiatica as model system, our experiments reveal for the first time that the accumulation of saponins and sapogenins is affected by resource allocation between primary and secondary metabolism and that besides carbon, also nutrient availability is relevant for the regulation of the centelloside synthesis. Finally, our results highlight the huge potential of optimized and carefully controlled mineral nutrition of medicinal plants for steering the bio-production of high-quality natural products. 相似文献
17.
G. Heinrich Krause Alexander W. Cheesman Klaus Winter Barbara Krause Aurelio Virgo 《Journal of plant physiology》2013
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. 相似文献
18.
Anna M. Jensen Magnus LöfEmile S. Gardiner 《Environmental and Experimental Botany》2011,71(3):367-375
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community. 相似文献
19.
Florentinus AK Bowden P Sardana G Diamandis EP Marshall JG 《Journal of Proteomics》2012,75(4):1303-1317
The proteins secreted by prostate cancer cells (PC3(AR)6) were separated by strong anion exchange chromatography, digested with trypsin and analyzed by unbiased liquid chromatography tandem mass spectrometry with an ion trap. The spectra were matched to peptides within proteins using a goodness of fit algorithm that showed a low false positive rate. The parent ions for MS/MS were randomly and independently sampled from a log-normal population and therefore could be analyzed by ANOVA. Normal distribution analysis confirmed that the parent and fragment ion intensity distributions were sampled over 99.9% of their range that was above the background noise. Arranging the ion intensity data with the identified peptide and protein sequences in structured query language (SQL) permitted the quantification of ion intensity across treatments, proteins and peptides. The intensity of 101,905 fragment ions from 1421 peptide precursors of 583 peptides from 233 proteins separated over 11 sample treatments were computed together in one ANOVA model using the statistical analysis system (SAS) prior to Tukey-Kramer honestly significant difference (HSD) testing. Thus complex mixtures of proteins were identified and quantified with a high degree of confidence using an ion trap without isotopic labels, multivariate analysis or comparing chromatographic retention times. 相似文献
20.
Shardendu K. Singh Girish Badgujar Vangimalla R. Reddy David H. Fleisher James A. Bunce 《Journal of plant physiology》2013
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area. 相似文献