首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been demonstrated previously that field pea (Pisum sativum L. cv. Express) grown in hydroponic culture on a complete nutrient solution with low NH4+ concentrations (<0.5 mM) will produce a larger than normal proliferation of nodules. Peas grown in the absence of mineral N in hydroponic culture have been shown to rapidly autoregulate nodulation, forming a static nodule number by 14 to 21 days after planting. The present study further characterizes the effect of NH4+ concentration in hydroponic culture on nodulation and nodule growth. Peas were grown continually for 4 weeks at NH4+ concentrations that were autoregulatory (0.0 mM), stimulatory (0.2 mM) or inhibitory (1.0 mM), or peas were transferred between autoregulatory or NH4+ inhibited and stimulatory solutions after 2 weeks. The peas nodulated as expected when grown under constant autoregulatory, stimulatory or inhibitory concentrations of NH4+. When peas were transferred from the inhibitory (1.0 mM) to the stimulatory solution (0.2 mM) a massive proliferation of nodule primordia over the entire root system was observed within 3 days of the transfer. When they were transferred from the autoregulatory (0.0 mM) to the stimulatory (0.2 mM) solution a 10-day delay occurred before a proliferation in nodule primordia occurred at distal regions of the root system. These findings support our hypothesis that low concentrations (<1.0 mM) of NH4+ in hydroponic culture cause a suppression of autoregulation in pea. In addition, the temporal and spatial differences in nodule proliferation between transfer treatments demonstrate at a whole plant level that autoregulation and NH4+ inhibition suppress early nodule development via different mechanisms.  相似文献   

2.
Gulden  Robert H.  Vessey  J. Kevin 《Plant and Soil》1997,195(1):195-205
Although mineral N generally has a negative effect on legume-rhizobia symbioses, experiments in hydroponic culture in our laboratory (Waterer et al., 1992) have shown that low concentrations of NH+ 4 can stimulate nodulation in pea (Pisum sativum L.). The objectives of the current study were to determine the immediate and residual effects of NH+ 4 on nodulation and N2 fixation in pea in sand culture. Peas (cv. Express) were exposed to 0.0, 0.5, 1.0, and 2.0 mM of 15N-labelled (NH4)2SO4 for 28 days after inoculation (DAI). From 28 to 56 DAI the plants were grown on a NH+ 4-free nutrient solution. Plants were harvested at 7, 14, 21, 28 and 56 DAI and nitrogenase activity was measured by gas exchange at 28 and 56 DAI. Root, shoot, and nodule dry weight (DW) and total N content were obtained, in addition to nodule counts and 15N enrichment of plant composites. The 1.0 and 2.0 mM NH+ 4 treatments consistently resulted in higher total plant DW accumulation than the control (0.0 mM NH+ 4). At 28 DAI, plants exposed to 1.0 and 2.0 mM NH+ 4 had 1.8 to 2.8 times more nodules plant-1, respectively, and plants exposed to 2.0 mM NH+ 4 had 1.7 fold higher specific nodulation (nodule number g-1 root DW). However, individual nodule DW was greater in control plants, such that there were no differences in nodule DW per plant among treatments. Ammonium treatment resulted in more nitrogen derived from the atmosphere (NDFA) in peas early in the experiment, but by 28 DAI there were no treatment effects on NDFA. Whole plant and nodule specific nitrogenase activity (µmol H2 g-1 nodule DW h-1) was higher in control plants at 28 DAI. However, by 56 DAI, after an additional 4 weeks of NH+ 4-free nutrition, no differences in nitrogenase activity nor whole plant or specific nodulation were detectable. This study indicates that nodulation in pea is stimulated in sand culture while exposed to NH+ 4. However, once NH+ 4 is removed, relative growth rate, nodulation and nitrogenase activity becomes similar to plants that were never exposed to NH+ 4.  相似文献   

3.
The effect of photosynthetic photon flux density (PPFD) on nitrogen utilization was determined in peas (Pisum sativum L. cv. Alaska) inoculated with Rhizobium leguminosarum and treated with nutrient solutions containing no combined nitrogen, 16 mM NO3?, or 16 mM NH4+. Plants were grown under controlled conditions at three PPFD values ranging from severely limiting to nearly saturating. Carboxylation efficiencies and CO2-exchange rates were highest in the N2-fixing plants and lowest in plants supplied with NH4+, and they generally increased with increasing PPFD. Photoefficiencies increased with PPFD but did not differ appreciably with the form of nitrogen applied. Nitrogen fixation, calculated from C2H2-reduction and H2-evolution data, was inhibited more by NH4+ than by NO3?application. Inhibition was counteracted by increasing PPFD. Percentage nitrogen decreased with increasing PPFD in plants treated with combined nitrogen and increased in the plants dependent on N2 fixation. The data reveal that photosynthetic efficiency and the capacity to fix N2 in peas are functions of PPFD and the availability of combined nitrogen and that these two factors are interrelated.  相似文献   

4.
Nodulation in pea (Pisum sativum L.) grown in hydroponic and sand culture systems is stimulated by low concentrations (<1.0 mM) of ammonium, but the physiological mechanisms underlying this stimulation are unknown. The current study involves a series of experiments, which investigate if the ammonium‐induced stimulation of nodulation involves changes in endogenous hormone (auxin and cytokinin) levels. P. sativum L. cv. Express was grown in growth pouches for 1 week with mineral N (0.5 and 2.0 mM NH4+ or NO3) or for 3 weeks exposed to exogenous indole‐3‐acetic acid (IAA) or 6‐benzylaminopurine (BAP) at a range of concentrations (10‐9?10‐5 M). Ammonium enhanced nodulation on the basis of both early whole plant (nodules plant?1) and specific nodulation (nodules g?1 root DW), especially in 0.5 mM treatment in which nodulation was approximately 4‐fold of the mineral‐N‐free control 1 week after inoculation. Correspondingly, the roots treated with ammonium contained much higher levels of t‐zeatin (Z) and lower t‐zeatin riboside (ZR) than that the control or nitrate‐treated plants. There was no significant difference in IAA levels between the control and ammonium treatments. Exogenous application of BAP for 3 weeks at concentrations of 10‐7?10‐5 M strongly inhibited nodulation. However, 10?9 M BAP, but not IAA, significantly enhanced nodulation. These data support the theory that a relatively high ratio of cytokinin:auxin in roots is favourable for nodule initiation, but that an excessively high level of cytokinin inhibits nodulation. Based on these results we propose that stimulation of nodulation by low concentrations of ammonium may be mediated through increasing Z level in roots, which alters the balance of cytokinin and auxin, which in turn induces cortical cell divisions leading to nodule initiation.  相似文献   

5.
Gulden  Robert H.  Vessey  J. Kevin 《Plant and Soil》1998,198(2):127-136
Experiments on peas (Gulden and Vessey, 1997) have indicated that NH 4 + stimulates both whole plant (nodules plant-1) and specific nodulation (nodules g-1 root DW). The effect of low concentrations of NH 4 + on the soybean/Bradyrhizobium symbiosis is unknown. The objectives of the current study were to determine the immediate and residual effects of NH 4 + on nodulation and N2 fixation in soybean (Glycine max [L.] Merr.) in sand culture. Soybean (cv. Maple Ridge) were exposed to 0.0, 0.5, 1.0 and 2.0 mM of 15N-labelled (NH4)2SO4 for 28 days after inoculation (DAI). From 29 to 56 DAI the plants were grown on NH 4 + -free nutrient solution. Plants were harvested at 7, 14, 21, 28 and 56 DAI for root, shoot and nodule dry weight (DW), total N content, nodule counts and 15N enrichment of plant composites. Nitrogenase activity was measured by gas exchange at 28 DAI. The plants in the control (0.0 mM NH 4 + ) treatment had consistently lower relative growth rates than the plants in the NH 4 + treatments during the first 28 DAI. Plant growth was also less at 2.0 mM NH 4 + compared to growth at 0.5 and 1.0 mM NH 4 + . At 28 DAI, plants exposed to 0.5 and 1.0 mM NH 4 + had significantly more nodules per plant and larger individual nodules than either the NH 4 + -free controls or the 2.0 mM NH 4 + -supplied plants. However, specific nodulation (nodule number g-1 root DW) and specific nitrogenase activity (nitrogenase activity g-1 nodule DW) were on average approximately 286% and 60% higher in the control plants, respectively, than for plants in the NH 4 + treatments at 28 DAI. Also at 28 DAI, specific nodule DW (nodule DW g-1 root DW) were 17, 44 and 53% higher in control plants than plants that had been exposed to 0.5, 1.0 and 2.0 mM NH 4 + . At 56 DAI, after an additional 4 weeks of NH 4 + -free nutrition, the plants which had previously received 0.5 and 1.0 mM NH 4 + still maintained the highest plant DW and N contents, however, specific nodule DW had become similar at 600 mg nodule DW g-1 root DW among all treatments. It is concluded that NH 4 + has a negative effect on the nodulation process in the soybean/Bradyrhizobium symbiosis (as best indicated by the negative effect of NH 4 + on specific nodulation). Despite this negative effect on specific nodulation, 0.5 and 1.0 mM NH 4 + resulted in higher whole plant nodulation and N2 fixation due to a compensating, positive effect on overall plant growth (i.e. fewer nodules g-1 root DW, but much larger roots). Once NH 4 + was removed from all treatments, the soybean plants appeared to move toward a consistent level of nodule DW relative to root DW.  相似文献   

6.
Photosynthesis, primary productivity, N content, and N2 fixation were determined as a function of applied NH4+ in peas (Pisum sativum L. cv. Alaska) which were inoculated or not inoculated with Rhizobium leguminosarum. Cabon dioxide exchange rate (CER) increased 10-fold, total N content 7-fold, and total dry weight 3-fold in 26-day-old uninoculated plants as applied NH4+ was increased from 0 to 16 millimolar. In inoculated plants of the same age CER and dry weight were maximal at 2 millimolar NH4+, and total N content increased between 0 and 2 millimolar NH4+ but did not change significantly with higher NH4+ applications. Per cent N content of uninoculated plants was significantly lower than that of inoculated plants except at the highest NH4+ concentration (16 millimolar). Symbiotic N2 fixation by inoculated plants was maximal in peas grown with 2 millimolar NH4+; and apparent relative efficiency of N2 fixation, calculated from C2H2 reduction and H2 evolution, was maximal in the 2 to 4 millimolar NH4+ concentration range. The capacity to fix N2 through the Rhizobium-legume symbiosis significantly enhanced the rate and efficiency of photosynthesis and plant N content when NH4+ concentration in the nutrient solution was below 8 millimolar. Above 8 millimolar NH4+ concentration uninoculated plants had greater CER, N content, and dry weight.  相似文献   

7.
Although mineral N (nitrate and ammonium) is believed to have generally negative effects on nodulation in legume–rhizobia symbioses, previous studies have shown that low, static concentrations of ammonium stimulate nodulation in pea, and that this enhancement may be due to an elevation in cytokinin to auxin levels in roots. Here, the effects of ammonium (0.0, 0.1, 0.5 and 2.5 mM) on nodulation and auxin levels were investigated in wild‐type (WT) white clover (Trifolium repens cv. Haifa) and its transformants (lines 38 and 41) which contain the auxin‐sensitive reporter gene (GH3:gusA). The effects of exogenous application (10?10, 10?9 and 10?8 M) of the cytokinin 6‐benzylaminopurine (BAP) were also assessed. Whole‐plant nodulation (nodules plant?1) and dry weight (DW)‐specific nodulation (nodules g?1 root DW) were stimulated (up to 49%) in all white clover lines by 0.1 mM NH4+. This represents the first confirmation of an NH4+‐induced stimulation of DW‐specific nodulation in a species other than pea. At 2.5 mM NH4+, the effect was lost on whole‐plant nodulation and was inhibitory on DW‐specific nodulation. Rhizobial inoculation resulted in a decline in the expression of GH3:gusA in root tips as expected; however, ammonium treatment did not affect GH3 expression in any root zones. Exogenous application of BAP at 10?9 and 10?8 M stimulated whole‐plant and DW‐specific nodulation in wild‐type white clover to a similar degree as treatment with 0.1 mM NH4+. These results support our previous hypothesis that the stimulation of nodulation by low concentrations of ammonium involves the alteration of the ratio of cytokinin to auxin, specifically by increasing cytokinin.  相似文献   

8.
The objective of this study was to assess whether a whole plant N‐feedback regulation impact on nitrogen fixation in Medicago truncatula would manifest itself in shifts of the composition of the amino acid flow from shoots to nodules. Detected shifts in the phloem amino acid composition were supposed to be mimicked through artificial phloem feeding and concomitant measurement of nodule activity. The amino acid composition of the phloem exudates was analyzed from plants grown under the influence of treatments (limiting P supply or application of combined nitrogen) known to reduce nodule nitrogen fixation activity. Plants in nutrient solution were supplied with sufficient (9 µM) control, limiting (1 µM) phosphorus or 3 mM NH4NO3 (downregulated nodule activity). Low phosphorus and the application of NH4NO3 reduced per plant and specific nitrogenase activity (H2 evolution). At day 64 of growth, phloem exudates were collected from cuts of the shoot base. The amount of amino acids was strongly increased in both phloem exudates and nodules of the treatments with downregulated nodule activity. The increase in the downregulated treatments was almost exclusively the result of a higher proportion of asparagine in both phloem exudates and nodules. Leaf labeling with 15N showed that nitrogen from the leaves is retranslocated to nodules. An artificial phloem feeding with asparagine resulted in an increased concentration of asparagine in nodules and a decreased nodule activity. A possible role of asparagine in an N‐feedback regulation of nitrogen fixation in M. truncatula is discussed.  相似文献   

9.
Preference for NH4+ or NO3 nutrition by the perennial legume Sesbania sesban (L.) Merr. was assessed by supplying plants with NH4+ and NO3 alone or mixed at equal concentrations (0.5 mM) in hydroponic culture. In addition, growth responses of S. sesban to NH4+ and NO3 nutrition and the effects on root nodulation and nutrient and mineral composition of the plant tissues were evaluated in a hydroponic setup at a range of external concentration of NH4+ and NO3 (0, 0.1, 0.2, 0.5, 2 and 5 mM). Seedlings of S. sesban grew equally well when supplied with either NH4+ or NO3 alone or mixed and had high relative growth rates (RGRs) ranging between 0.19 and 0.21 d−1. When larger plants of S. sesban were supplied with NH4+ or NO3 alone, the RGRs and shoot elongation rates were not affected by the external concentration of inorganic N. At external N concentrations up to 0.5 mM nodulation occurred and contributed to the N nutrition through fixation of gaseous N2 from the atmosphere. For both NH4+ and NO3-fed plants the N concentration in the plant tissues, particularly water-extractable NO3, increased at high supply concentrations, and concentrations of mineral cations generally decreased. It is concluded that S. sesban can grow without an external inorganic N supply by fixing atmospheric N2 gas via root nodules. Also, S. sesban grows well on both NH4+ and NO3 as the external N source and the plant can tolerate relatively high concentrations of NH4+. This wide ecological amplitude concerning N nutrition makes S. sesban very useful as a N2-fixing fallow crop in N deficient areas and also a candidate species for use in constructed wetland systems for the treatment of NH4+ rich waters.  相似文献   

10.
The synergistic benefits of the dual inoculation of legumes with nodule bacteria and arbuscular mycorrhizae (AM) are well established, but the effect of an external NH4+ supply on this tripartite relationship is less clear. This effect of NH4+ supply was investigated with regards to the growth and function of the legume host and both symbionts. Nodulated Phaseolus vulgaris seedlings with and without AM, were grown in a sand medium with either 0 N, 1 mM or 3 mM NH4+. Plants were harvested at 30 days after emergence and measurements were taken for biomass, N2 fixation, photosynthesis, asparagine concentration, construction costs and N nutrition. The addition of NH4+ led to a decline in the percentage AM colonization and nodule dry weights, although AM colonization was affected to a lesser extent. NH4+ supply also resulted in a decrease in the reliance on biological nitrogen fixation (BNF); however, the AM roots maintained higher levels of NH4+ uptake than their non-AM counterparts. Furthermore, the non-AM plants had a higher production of asparagine than the AM plants. The inhibitory effects of NH4+ on nodule function can be reduced by the presence of AM at moderate levels of NH4+ (1 mM), via improving nodule growth or relieving the asparagine-induced inhibition of BNF.  相似文献   

11.
Common bean,Phaseolus vulgaris L., is known to be ‘inefficient’ in nodulation and N2 fixation although it responds to applied nitrogen. An experiment was conducted to identify and to characterize bean cultivars nodulating in the presence of a high level of nitrogen. Sixteen cultivars and a check for inefficient nodulation, OAC Seaforth, were inoculated and grown for 40 days in replicated pots supplied with zero, 3.5 and 10.5 mM combined nitrogen as NO 3 and NH 4 + . Seven traits relating to nodulation and N2 fixation were all significantly affected by N level (N), cultivar (Cv) and N × Cv interactions (except for root dry weight), indicating that cultivars responded differently to the N treatments. Total dry weight (W) and shoot to root ratio (S/R) increased with the increased N levels. Nodule dry weight (Wn), visual nodulation score (Nv) and nodulation index (Nx) decreased as the N increased. Percent N and N content per plant increased with the increased N level. Plant weight (W) was positively correlated with Wn, Nv and N content and negatively correlated with %N. Nodulation score was positively associated with Wn and plant N content. Genotypes superior in nodulation and N2 fixation in the presence of N were identified. Cultivars Italian Barlotti, California Light Red Kidney, Kentucky Wonder A and Pueblo 152 were selected for further testing and use in improving the nitrate tolerant nodulating characteristic of bean.  相似文献   

12.
Ammonium (NH4+) is a central intermediate in the N metabolism of plants, but the quantitative importance of NH4+ in transporting N from root to shoot and the capability of plants to store NH4+ in leaves are still matters of substantial controversy. This paper shows that some of these controversies have to be related to the use of inadequate analytical procedures used for extraction and quantification of NH4+ in plants. The most frequently used methods for determination of NH4+, viz. colorimetric methods based on the classical Berthelot reaction, suffered severely from interference caused by amino acids, amines, amides and proteins. For some of these metabolites the interference was positive, while for others it was negative, making correction impossible. Consequently, colorimetric analysis is inapplicable for determination of NH4+ in plants. Results obtained by ion chromatography may overestimate the NH4+ concentration due to co‐elution of NH4+ with amines like methylamine, ethylamine, ethanolamine and the non‐protein amino acid Γ‐aminobutyric acid. Derivatization of NH4+ with o‐phthalaldehyde at alkaline pH and subsequent quantification of NH4+ by fluorescence spectroscopy was also associated with interference. However, when pH was lowered to 6.8 during derivatization and 2‐mercaptoethanol was used as reductant, NH4+ could be determined with a high selectivity and sensitivity down to a detection limit of 3.3 μM in a 10‐μl sample volume. Derivatization was performed on‐line using a column‐less HPLC system, enabling rapid quantification of NH4+ in a few minutes. Flow injection analysis with on‐line gas dialysis was, likewise, free from interference, except when applied on highly senescent plant material containing volatile amines. Labile N metabolites in leaf tissue extract, xylem sap and apoplastic fluid were degraded to NH4+ during extraction and subsequent instrumental analysis if the samples were not stabilised. A simple and efficient stabilisation could be obtained by addition of 10 mM ice‐cold HCOOH to the plant extraction medium or to the samples of apoplastic fluid or xylem sap. We conclude that significant concentrations of NH4+, exceeding 1 mM, may occur in xylem sap, leaf apoplastic fluid and leaf tissue water of nitrate‐grown tomato and oilseed rape plants. The measured NH4+ concentrations were not a result of excessive N supplies, as even plants grown under mildly N‐deficient conditions contained NH4+.  相似文献   

13.
We previously reported that inhibition of ethylene biosynthesis with aminoethoxyvinylglycine (AVG) eliminated the inhibitory effect of NO3 on nodulation of alfalfa (Medicago sativa L. cv. Aragon) plants grown aeroponically. In this work, the effect of Ag+, as an inhibitor of ethylene action, has been studied in plants growing aeroponically or in darkened tubes with vermiculite, and low-nitrate or high-nitrate solution. Vermiculite-grown plants developed up to 3 times as many nodules as did those growing aeroponically. Nodule formation was mirrored by dry-matter accumulation. High (10 mol m–3) NO3 applied from planting inhibited nodulation to an equal extent (c. 50%) in the two growth conditions. In contrast, Ag+ treatment increased nodule formation at all NO3 concentrations assayed under the two growth conditions, with the stimulation being higher in plants grown aeroponically. Finally, no effect of Ag+ (10 mmol m–3) on plant growth was observed in either of the growth conditions. The effectiveness of NO3 as a nodulation inhibitor and enhancer of ethylene biosynthesis in roots of alfalfa was also studied. Within 24 h after inoculation, 10 mol m–3 NO3 exerted most of its inhibitory effect on nodulation. At the same time, both 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity and ethylene evolution rates markedly increased in inoculated and uninoculated alfalfa roots treated with NO3. Support for a role of endogenous ethylene in the control of nodule formation in legumes is discussed.  相似文献   

14.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

15.
Summary This study was conducted to determine the effect of short term application of NH4NO3 on nodule function and to determine whether the rhizobial isolate used was a significant factor in this effect. Pea plants were inoculated with 10 differentRhizobium leguminosarum isolates and grown for 3 weeks in N-free medium before addition of 0, 1, 2 or 5 mM NH4NO3 for 2 to 7 days. Acetylene reduction and leghemoglobin content decreased with increasing exposure time to NH4NO3 and with increasing concentration of NH4NO3. NH 4 + and NO 3 depletion from the nutrient medium were assayed in plants exposed to 5 mM NH4NO3 and mean uptake rates were similar for each ion. There were significant differences among isolates in the rate of decrease of C2H2 reduction with increasing NH4NO3 concentration (C2H2 reduction responsiveness to NH4NO3) 4 and 7 days after addition of NH4NO3 but no differences after 2 days of exposure to NH4NO3. There were significant differences among isolates in NH 4 + depletion from the nutrient medium but these differences were not correlated with the differences observed in C2H2 reduction. Ranking of the isolates for C2H2 reduction responsiveness to NH4NO3 applied to plants with nodules was different from that obtained when NH4NO3 was applied at seeding. Isolates with varying sensitivity to NH4NO3 may be useful tools for determining the mechanisms responsible for inhibition of symbiotic N2 fixation by combined nitrogen. NRCC paper no. 25863.  相似文献   

16.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

17.
B. J. Atwell 《Plant and Soil》1992,139(2):247-251
Two cultivars of Lupinus angustifolius L. were grown in a glasshouse in solutions containing NO3 -, NH4 + or NH4NO3 with a total nitrogen concentration of 2.8 M m-3 in each treatment. One cultivar chosen (75A-258) was relatively tolerant to alkaline soils whereas the other (Yandee) was intolerant to alkalinity. Controlled experiments were used to assess the impact of cationic vs. anionic forms of nitrogen on the relative performance of these cultivars. Relative growth rates (dry weight basis) were not significantly different between the two cultivars when grown in the presence of NO3 -, NH4 + or NH4NO3. However, when NO3 - was supplied, there was a modest decline in relative growth rates in both cultivars over time. When plants grown on the three sources of nitrogen for 9 days were subsequently supplied with 15NH4NO3 or NH4 15NO3 for 30 h, NH4 + uptake was generally twice as fast as NO3 - uptake, even for plants grown in the presence of NO3 -. Low rates of NO3 - uptake accounted for the decrease in growth rates over time when plants were grown in the presence of NO3 -. It is concluded that the more rapid growth of 75A-258 than Yandee in alkaline conditions was not due to preferential uptake of NH4 + and acidification of the external medium. In support of this view, acidification of the root medium was not significantly different between cultivars when NH4 + was the sole nitrogen source.  相似文献   

18.
The effects of the ammonium (NH4+) and nitrate (NO3-) forms of nitrogen and NaCl on the growth, water relations and photosynthesis performance of sunflower (Helianthus annuus L.) were examined under glasshouse conditions. Eight-day-old plants of cv. Hisun 33 were subjected for 21 days to Hoagland's nutrient solution containing 8 mol m-3N as NH4+or NO3-, and salinised with 0, 60, or 120 mol m-3NaCl. Fresh weights of shoots and roots, and leaf area of NO3-supplied non-salinised plants were significantly greater than those of NH4+-supplied non-salinised plants. But addition of NaCl to the rooting medium of these plants had more inhibitory effect on the growth of NO3--supplied plants than on NH4+-supplied plants. Both leaf water and osmotic potentials of plants grown with NH4+were lower than those of plants given NO3-under both non-saline and saline conditions. Chlorophylls a and b concentrations were higher in plants grown with NH4+than N03--supplied plants at the lower two levels of salinisation. The rate of photosynthesis in plants was considerably higher in non-salinised plants grown with NO3-than with NH4+, but with increase in salinisation the photosynthesis rate decreased in NO3--supplied plants, but not in those given NH4+. The rate of transpiration was increased significantly by salinisation in NO3--supplied plants, but not consistently so in NH4+-supplied plants. The stomatal conductances were much higher in plants given NO3-than with NH4+when grown under non-saline conditions, but not when salinised. As a consequence, water-use efficiency in NO3--supplied control plants was better than in NH4+-supplied under non-saline conditions, but worse under saline conditions. The different forms of nitrogen and the addition of NaCl to the growing medium did not affect the relative intercellular concentrations of CO2 (Ci/Ca). Overall, the NH4+form of nitrogen inhibited the growth of sunflowers under non-saline conditions, but NO3-and NaCl interacted to inhibit growth more than did NH4+under saline conditions.  相似文献   

19.
The effects of inorganic nutrient (ammonium [NH4 + ] and nitrate [NO3 ]) and amino acid (glutamate [glu] and glutamine [gln]) additions on rates of N2 fixation, N uptake, glutamine synthetase (GS) activity, and concentrations of intracellular pools of gln and glu were examined in natural and cultured populations of Trichodesmium. Additions of 1 μM glu, gln, NO3 , or NH4 + did not affect short-term rates of N2 fixation. This may be an important factor that allows for continued N2 fixation in oligotrophic areas where recycling processes are active. N2 fixation rates decreased when nutrients were supplied at higher concentrations (e.g. 10 μM). Uptake of combined N (NH4 + , NO3 , and amino acids) by Trichodesmium was stimulated by increased concentrations. For NO3 , proportional increases in NO3 uptake and decreases in N2 fixation were observed when additions were made to cultures before the onset of the light period. GS activity did not change much in response to the addition of NH4 + , NO3 , glu, or gln. GS is necessary for N metabolism, and the bulk of this enzyme pool may be conserved. Intracellular pools of glu and gln varied in response to 10 μM additions of NH4 + , glu, or gln. Cells incubated with NH4 + became depleted in intracellular glu and enriched with intracellular gln. The increase in the gln/glu ratio corresponded to a decrease in the rate of N2 fixation. Although the gln/glu ratio decreased in cells exposed to the amino acids, there was only a corresponding decrease in N2 fixation after the gln addition. The results presented here suggest that combined N concentrations on the order of 1 μM do not affect rates of N2 fixation and metabolism, although higher concentrations (e.g. 10 μM) can. Moreover, these effects are exerted through products of NH4 + assimilation rather than exogenous N, as has been suggested for other species. These results may help explain how cultures of Trichodesmium are able to simultaneously fix N2 and take up NH4 + and how natural populations continue to fix N2 once combined N concentrations increase within a bloom.  相似文献   

20.
Nodulation, nitrogen (N2) fixation and xylem sap composition were examined in sand cultured plants of Bambara groundnut (Vigna subterranea L.) and Kersting's bean (Macrotyloma geocarpum L.) inoculated with Bradyrhizobium strain CB756 and supplied via the roots for a 4 week period from the third week onwards with different levels of (15N)-nitrate (0–15 mM). The separate contributions of nitrate and N2 to plant nitrogen were measured by isotope dilution. Increasing levels of nitrate inhibited nodule growth (measured as dry matter or nodule N) of both species parallel with decreased dependence on symbiotically-fixed N. Specific nodule activity (N2 fixed g nodule dry−1 d−1 of nodules) was reduced progressively with time in V. subterranea at higher (5 or 15 mM) levels of NO3, but this was not so for M. geocarpum. Root xylem bleeding sap of both species showed ureides (allantoin and allantoic acid) as predominant (>90%) solutes of nitrogen when plants were relying solely on atmospheric N. Levels of ureide and glutamine decreased and those of asparagine and nitrate in xylem increased with increasing level of applied nitrate. Relative levels of xylem ureide-N were positively correlated (R2=0.842 for M. geocarpum and 0.556 for V. subterranea), and the ratio of asparagine to glutamine in xylem exudate negatively correlated (R2=0.955 for M. geocarpum and 0.736 for V. subterranea) with plant reliance on nitrogen fixation. The data indicate that xylem sap analyses might be useful for indirect field assays of nitrogen fixation by the species and that Kersting's bean might offer some potential as a symbiosis in which N2 fixation is relatively tolerant of soil N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号