首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
Pro‐inflammatory cytokine TNF‐alpha (TNF) production from in vitro lipopolysaccharide (LPS)‐stimulated human peripheral blood CD14+ cells (PB‐CD14) was inhibited by A2A adenosine receptor (AdoR) (A2AR) or ß2 adrenergic receptor (ADR) (ß2R) signaling in a concentration‐dependent manner. These inhibitory effects were presumably mediated by the increase in intracellular cAMP. Furthermore A2AR agonist and ß2R agonist synergistically inhibited the TNF production of LPS‐stimulated PB‐CD14 cells. These results suggest that the anti‐inflammatory effect of extracellular adenosine is, at least in part, due to the modification of the cytokine milieu via A2A signaling, and that the targeting of both A2AR and ß2R may have strong therapeutic potential for the inflammatory diseases.  相似文献   

2.
The extension of microglial processes toward injured sites in the brain is triggered by the stimulation of the purinergic receptor P2Y(12) by extracellular ATP. We recently showed that P2Y(12) stimulation by ATP induces microglial process extension in collagen gels. In the present study, we found that a P2Y(12) agonist, 2-methylthio-ADP (2MeSADP), failed to induce the process extension of microglia in collagen gels and that co-stimulation with adenosine, a phosphohydrolytic derivative of ATP, and 2MeSADP restored the chemotactic process extension. An adenosine A3 receptor (A3R)-selective agonist restored the chemotactic process extension, but other receptor subtype agonists did not. The removal of adenosine by adenosine deaminase and the blocking of A3R by an A3R-selective antagonist inhibited ADP-induced process extension. The A3R antagonist inhibited ADP-induced microglial migration, and an A3R agonist promoted 2MeSADP-stimulated migration. ADP and the A3R agonist activated Jun N-terminal kinase in microglia, and a Jun N-terminal kinase inhibitor inhibited the ADP-induced process extension. An RT-PCR analysis showed that A1R and A3R were expressed by microglia sorted from adult rat brains and that the A2AR expression level was very low. These results suggested that A3R signaling may be involved in the ADP-induced process extension and migration of microglia.  相似文献   

3.
Despite a widely accepted role of arrestins as "uncouplers" of G protein-coupled receptor (GPCR) signaling, few studies have demonstrated the ability of arrestins to affect second messenger generation by endogenously expressed receptors in intact cells. In this study we demonstrate arrestin specificity for endogenous GPCRs in primary cultures of human airway smooth muscle (HASM). Expression of arrestin-green fluorescent protein (ARR2-GFP or ARR3-GFP) chimeras in HASM significantly attenuated isoproterenol (beta(2)-adrenergic receptor (beta(2)AR)-mediated)- and 5'-(N-ethylcarboxamido)adenosine (A2b adenosine receptor-mediated)-stimulated cAMP production, with fluorescent microscopy demonstrating agonist-promoted redistribution of cellular ARR2-GFP into a punctate formation. Conversely, prostaglandin E(2) (PGE(2))-mediated cAMP production was unaffected by arrestin-GFP, and PGE(2) had little effect on arrestin-GFP distribution. The pharmacological profile of various selective EP receptor ligands suggested a predominantly EP2 receptor population in HASM. Further analysis in COS-1 cells revealed that ARR2-GFP expression increased agonist-promoted internalization of wild type beta(2)AR and EP4 receptors, whereas EP2 receptors remained resistant to internalization. However, expression of an arrestin whose binding to GPCRs is largely independent of receptor phosphorylation (ARR2(R169E)-GFP) enabled substantial agonist-promoted EP2 receptor internalization, increased beta(2)AR internalization to a greater extent than did ARR2-GFP, yet promoted EP4 receptor internalization to the same degree as did ARR2-GFP. Signaling via endogenous EP4 receptors in CHO-K1 cells was attenuated by ARR2-GFP expression, whereas ARR2(R169E)-GFP expression in HASM inhibited EP2 receptor-mediated cAMP production. These findings demonstrate differential effects of arrestins in altering endogenous GPCR signaling in a physiologically relevant cell type and reveal a variable dependence on receptor phosphorylation in dictating arrestin-receptor interaction.  相似文献   

4.
Promiscuous coupling between G protein-coupled receptors and multiple species of heterotrimeric G proteins provides a potential mechanism for expanding the diversity of G protein-coupled receptor signaling. We have examined the mechanism and functional consequences of dual Gs/Gi protein coupling of the beta3-adrenergic receptor (beta3AR) in 3T3-F442A adipocytes. The beta3AR selective agonist disodium (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1, 3-benzodioxole-2,2-dicarboxylate (CL316,243) stimulated a dose-dependent increase in cAMP production in adipocyte plasma membrane preparations, and pretreatment of cells with pertussis toxin resulted in a further 2-fold increase in cAMP production by CL316,243. CL316,243 (5 microM) stimulated the incorporation of 8-azido-[32P]GTP into Galphas (1.57 +/- 0.12; n = 3) and Galphai (1. 68 +/- 0.13; n = 4) in adipocyte plasma membranes, directly demonstrating that beta3AR stimulation results in Gi-GTP exchange. The beta3AR-stimulated increase in 8-azido-[32P]GTP labeling of Galphai was equivalent to that obtained with the A1-adenosine receptor agonist N6-cyclopentyladenosine (1.56 +/- 0.07; n = 4), whereas inclusion of unlabeled GTP (100 microM) eliminated all binding. Stimulation of the beta3AR in 3T3-F442A adipocytes led to a 2-3-fold activation of mitogen-activated protein (MAP) kinase, as measured by extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation. Pretreatment of cells with pertussis toxin (PTX) eliminated MAP kinase activation by beta3AR, demonstrating that this response required receptor coupling to Gi. Expression of the human beta3AR in HEK-293 cells reconstituted the PTX-sensitive stimulation of MAP kinase, demonstrating that this phenomenon is not exclusive to adipocytes or to the rodent beta3AR. ERK1/2 activation by the beta3AR was insensitive to the cAMP-dependent protein kinase inhibitor H-89 but was abolished by genistein and AG1478. These data indicate that constitutive beta3AR coupling to Gi proteins serves both to restrain Gs-mediated activation of adenylyl cyclase and to initiate additional signal transduction pathways, including the ERK1/2 MAP kinase cascade.  相似文献   

5.
6.
7.
In the heart beta1-adrenergic (beta1R) and adenosine A1 (A1R) and A2A (A2AR) receptors modulate contractile and metabolic function. The interaction between these receptors was investigated at the level of G-protein cycling by determining the effect of receptor agonists on the binding of GTP to G-proteins and displacement of G alpha-subunit-bound GDP by GTP. Crude membranes from rat heart or brain were stimulated by agonists for beta1R (isoproterenol; ISO), A1R (chlorocyclopentyladenosine, CCPA) and A2AR (CGS-21680; CGS). GTP binding to membranes was increased by ISO (17%), CCPA (6%) and CGS (12%). Binding values observed with incubation using ISO and CCPA together were significantly less than values obtained by the incubation of individual agents alone. With ISO, GTP binding to G alpha(s) subunits as determined by immunoprecipitation was increased 79% in heart and 87% in brain. These increases were attenuated by CCPA, an effect that was inhibited by CGS. GDP release by membranes was increased 6.9% and 4.6% by ISO and CCPA, respectively. After co-incubation of these agonists, release was increased less than determined by the addition of the individual agent responses. CGS inhibited the reduced release caused by of CCPA. Adenylyl cyclase activity stimulated by ISO was attenuated 33% by CCPA, an effect inhibited by CGS. Together, these results indicate that A1R exert an antiadrenergic action at the level of beta1R stimulated G(s)-protein cycling and that A2AR reduce this action.  相似文献   

8.
In the present study, we determined whether the immunomodulatory effect of adenosine receptor stimulation depends on the Toll-like Receptor (TLR) used for stimulation of cytokine release. Therefore, human mononuclear cells were stimulated by different TLR agonists in the absence and presence of A1 (CPA), A2a (CGS21680), and A3 (Cl-IB-MECA) adenosine receptor agonists. Effects of these agonists on Il-6, Il-10, IFN-gamma, TNF-alpha, and Il-1beta production were expressed as percentage inhibition/stimulation after TLR stimulation. CGS21680 inhibited TLR4-mediated TNF-alpha release and potentiated TLR3- and TLR5-mediated IL-6 release. Cl-IB-MECA inhibited TLR4-agonist-induced IFN-gamma release. Interestingly, CPA en Cl-IB-MECA tended to inhibit cytokine release only after TLR4 stimulation. In more detail, CPA potentiated TLR5-mediated IL-6 production, TLR3-mediated IFN-gamma production and TLR3-mediated Il-1beta-production compared to TLR4-mediated stimulation. Cl-IB-MECA potentiated TLR5-mediated IL-6 and Il-1beta formation as compared to TLR4-mediated stimulation. Finally, CGS21680 potentiated TLR5-mediated IL-6 production compared to TLR1-2 stimulation, and potentiated TLR3- and TLR5-mediated IL-10 production compared to TLR1-2-mediated stimulation. In conclusion, the effect of adenosine agonists on cytokine production depends on the specific TLR agonist used for stimulation. These findings suggest that well-known anti-inflammatory effects of adenosine agonists on LPS-induced inflammation cannot be extrapolated to situations in which stimulation of other TLR subtypes is involved.  相似文献   

9.
Recently, evidence has emerged that heptaspanning membrane or G protein-coupled receptors may be linked to intracellular proteins identified as regulators of receptor anchoring and signaling. Using a yeast two-hybrid screen, we identified alpha-actinin, a major F-actin-cross-linking protein, as a binding partner for the C-terminal domain of the adenosine A2A receptor (A2AR). Colocalization, co-immunoprecipitation, and pull-down experiments showed a close and specific interaction between A2AR and alpha-actinin in transfected HEK-293 cells and also in rat striatal tissue. A2AR activation by agonist induced the internalization of the receptor by a process that involved rapid beta-arrestin translocation from the cytoplasm to the cell surface. In the subsequent receptor traffic from the cell surface, the role of actin organization was shown to be crucial in transiently transfected HEK-293 cells, as actin depolymerization by cytochalasin D prevented its agonist-induced internalization. A2ADeltaCTR, a mutant version of A2AR that lacks the C-terminal domain and does not interact with alpha-actinin, was not able to internalize when activated by agonist. Interestingly, A2ADeltaCTR did not show aggregation or clustering after agonist stimulation, a process readily occurring with the wild-type receptor. These findings suggest an alpha-actinin-dependent association between the actin cytoskeleton and A2AR trafficking.  相似文献   

10.
S-adenosylmethionine (SAMe) is the first product in methionine metabolism and serves as a precursor for glutathione (GSH) as well as a methyl donor in most transmethylation reactions. The administration of exogenous SAMe has beneficial effects in many types of liver diseases. One mechanism for the hepatoprotective action is its ability to regulate the immune system by modulating cytokine production from LPS stimulated monocytes. In the present study, we investigated possible mechanism(s) by which exogenous SAMe supplementation modulated production of TNF, IL-10 and IL-6 in LPS stimulated RAW 264.7 cells, a murine monocyte cell line. Our results demonstrated that exogenous SAMe supplementation inhibited TNF production but enhanced both IL-10 and IL-6 production. SAMe increased intracellular GSH level, however, N-acetylcysteine (NAC), the GSH pro-drug, decreased the production of all three cytokines. Importantly, SAMe increased intracellular adenosine levels, and exogenous adenosine supplementation had effects similar to SAMe on TNF, IL-10 and IL-6 production. 3-Deaza-adenosine (DZA), a specific inhibitor of S-adenosylhomocysteine (SAH) hydrolase, blocked the elevation of IL-10 and IL-6 production induced by SAMe, which was rescued by the addition of exogenous adenosine. Furthermore, the enhancement of LPS-stimulated IL-10 and IL-6 production by both SAMe and adenosine was inhibited by ZM241385, a specific antagonist of the adenosine (A(2)) receptor. Our results suggest that increased adenosine levels with subsequent binding to the A(2) receptor account, at least in part, for SAMe modulation of IL-10 and IL-6, but not TNF production, from LPS stimulated monocytes.  相似文献   

11.
Pharmacological studies suggest that A(2B) adenosine receptors mediate proinflammatory effects of adenosine in human mast cells in part by up-regulating production of Th2 cytokines and angiogenic factors. This concept has been recently challenged by the finding that mast cells cultured from bone marrow-derived mast cells (BMMCs) of A(2B) knockout mice display an enhanced degranulation in response to FcepsilonRI stimulation. This finding was interpreted as evidence of anti-inflammatory functions of A(2B) receptors and it was suggested that antagonists with inverse agonist activity could promote activation of mast cells. In this report, we demonstrate that genetic ablation of the A(2B) receptor protein has two distinct effects on BMMCs, one is the previously reported enhancement of Ag-induced degranulation, which is unrelated to adenosine signaling; the other is the loss of adenosine signaling via this receptor subtype that up-regulates IL-13 and vascular endothelial growth factor secretion. Genetic ablation of A(2B) receptors had no effect on A(3) adenosine receptor-dependent potentiation of Ag-induced degranulation in mouse BMMCs, but abrogated A(2B) adenosine receptor-dependent stimulation of IL-13 and vascular endothelial growth factor secretion. Adenosine receptor antagonists MRS1706 and DPCPX with known inverse agonist activity at the A(2B) subtype inhibited IL-13 secretion induced by the adenosine analog NECA, but did not mimic the enhanced Ag-induced degranulation observed in A(2B) knockout BMMCs. Thus, our study confirmed the proinflammatory role of adenosine signaling via A(2B) receptors and the anti-inflammatory actions of A(2B) antagonists in mouse BMMCs.  相似文献   

12.
Adenosine and ATP/UTP are main components of the purinergic system that modulate cellular and tissue functions via specific adenosine and P2 receptors, respectively. Here, we explored the possibility that A(1) adenosine receptor (A(1)R) and P2Y(2) receptor (P2Y(2)R) form heterodimers with novel pharmacological properties. Coimmunoprecipitation showed these receptors directly associate in A(1)R/P2Y(2)R-cotransfected HEK293T cells. Agonist binding by the A(1)R was significantly inhibited by P2Y(2)R agonists only in membranes from cotransfected cells. The functional activity of A(1)R, as indicated by the G(i/o)-mediated inhibition of adenylyl cyclase, in the cotransfected cells was attenuated by the simultaneous addition of A(1)R and P2Y(2)R agonists. The increase in intracellular Ca(2+) levels induced by P2Y(2)R activation of G(q/11) was synergistically enhanced by the simultaneous addition of an A(1)R agonist in the coexpressing cells. These results suggest that oligomerization of A(1)R and P2Y(2)R generates a unique complex in which the simultaneous activation of the two receptors induces a structural alteration that interferes signaling via G(i/o) but enhances signaling via G(q/11).  相似文献   

13.
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.  相似文献   

14.
Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.  相似文献   

15.
Agonist-promoted desensitization of G-protein-coupled receptors results in partial uncoupling of receptor from cognate G-protein, a process that provides for rapid adaptation to the signaling environment. This property plays important roles in physiologic and pathologic processes as well as therapeutic efficacy. However, coupling is also influenced by polymorphic variation, but the relative impact of these two mechanisms on signal transduction is not known. To determine this we utilized recombinant cells expressing the human beta(1)-adrenergic receptor (beta(1)AR) or a gain-of-function polymorphic variant (beta(1)AR-Arg(389)), and the beta(2)-adrenergic receptor (beta(2)AR) or a loss-of-function polymorphic receptor (beta(2)AR-Ile(164)). Adenylyl cyclase activities were determined with multiple permutations of the possible states of the receptor: genotype, basal, or agonist stimulated and with or without agonist pre-exposure. For the beta(1)AR, the enhanced function of the Arg(389) receptor underwent less agonist-promoted desensitization compared with its allelic counterpart. Indeed, the effect of polymorphic variation on absolute adenylyl cyclase activities was such that desensitized beta(1)AR-Arg(389) signaling was equivalent to non-desensitized wild-type beta(1)AR; that is, the genetic component had as much impact as desensitization on receptor coupling. In contrast, the enhanced signaling of wild-type beta(2)AR underwent less desensitization compared with beta(2)AR-Ile(164), thus the heterogeneity in absolute signaling was markedly broadened by this polymorphism. Inverse agonist function was not affected by polymorphisms of either subtype. A general model is proposed whereby up to 10 levels of signaling by G-protein-coupled receptors can be present based on the influences of desensitization and genetic variation on coupling.  相似文献   

16.
17.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

18.
beta- and alpha(2)-adrenergic receptors are known to exhibit substantial cross-talk and mutual regulation in tissues where they are expressed together. We have found that the beta(1)-adrenergic receptor (beta(1)AR) and alpha(2A)-adrenergic receptor (alpha(2A)AR) heterodimerize when coexpressed in cells. Immunoprecipitation studies with differentially tagged beta(1)AR and alpha(2A)AR expressed in HEK-293 cells revealed robust co-immunoprecipitation of the two receptors. Moreover, agonist stimulation of alpha(2A)AR was found to induce substantial internalization of coexpressed beta(1)AR, providing further evidence for a physical association between the two receptors in a cellular environment. Ligand binding assays examining displacement of [(3)H]dihydroalprenolol binding to the beta(1)AR by various ligands revealed that beta(1)AR pharmacological properties were significantly altered when the receptor was coexpressed with alpha(2A)AR. Finally, beta(1)AR/alpha(2A)AR heterodimerization was found to be markedly enhanced by a beta(1)AR point mutation (N15A) that blocks N-linked glycosylation of the beta(1)AR as well as by point mutations (N10A/N14A) that block N-linked glycosylation of the alpha(2A)AR. These data reveal an interaction between beta(1)AR and alpha(2A)AR that is regulated by glycosylation and that may play a key role in cross-talk and mutual regulation between these receptors.  相似文献   

19.
Beta2AR desensitization in airway smooth muscle (ASM) mediated by airway inflammation has been proposed to contribute to asthma pathogenesis and diminished efficacy of beta-agonist therapy. Mechanistic insight into this phenomenon is largely conceptual and lacks direct empirical evidence. Here, we employ molecular and genetic strategies to reveal mechanisms mediating cytokine effects on ASM beta2AR responsiveness. Ectopic expression of inhibitory peptide (PKI-GFP) or a mutant regulatory subunit of PKA (RevAB-GFP) effectively inhibited intracellular PKA activity in cultured human ASM cells and enhanced beta2AR responsiveness by mitigating both agonist-specific (beta-agonist-mediated) desensitization and cytokine (IL-1beta and TNF-alpha)-induced heterologous desensitization via actions on multiple targets. In the absence of cytokine treatment, PKA inhibition increased beta2AR-mediated signaling by increasing both beta2AR-G protein coupling and intrinsic adenylyl cyclase activity. PKI-GFP and RevAB-GFP expression also conferred resistance to cytokine-promoted beta2AR-G protein uncoupling and disrupted feed-forward mechanisms of PKA activation by attenuating the induction of COX-2 and PGE2. Cytokine treatment of tracheal ring preparations from wild-type mice resulted in a profound loss of beta-agonist-mediated relaxation of methacholine-contracted rings, whereas rings from EP2 receptor knockout mice were largely resistant to cytokine-mediated beta2AR desensitization. These findings identify EP2 receptor- and PKA-dependent mechanisms as the principal effectors of cytokine-mediated beta2AR desensitization in ASM.  相似文献   

20.
Human Toll like receptor (TLR) 2 has been implicated as a signaling receptor for LPS from Gram-negative bacteria and cell wall components from Gram-positive organisms. In this study, we investigated whether TLR2 can signal cell activation by the heat-killed group B streptococci type III (GBS) and Listeria monocytogenes (HKLM). HKLM, but not GBS, showed a time- and dose-dependent activation of Chinese hamster ovary cells transfected with human TLR2, as measured by translocation of NF-kappaB and induction of IL-6 production. A mAb recognizing a TLR2-associated epitope (TL2.1) was generated that inhibited IL-6 production from Chinese hamster ovary-TLR2 cells stimulated with HKLM or LPS. The TL2.1 mAb reduced HKLM-induced TNF production from human monocytes by 60%, whereas a CD14 mAb (3C10) reduced the TNF production by 30%. However, coadministrating TL2.1 and 3C10 inhibited the TNF response by 80%. In contrast to this, anti-CD14 blocked LPS-induced TNF production from monocytes, whereas anti-TLR2 showed no inhibition. Neither TL2.1 nor 3C10 affected GBS-induced TNF production. These results show that TLR2 can function as a signaling receptor for HKLM, possibly together with CD14, but that TLR2 is unlikely to be involved in cell activation by GBS. Furthermore, although LPS can activate transfected cell lines through TLR2, this receptor does not seem to be the main transducer of LPS activation of human monocytes. Thus, our data demonstrate the ability of TLR2 to distinguish between different pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号