首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactic acid production by repeated fed-batch fermentation using free and immobilized cells of Lactobacillus lactis-11 in a packed bed-stirred fermentor (PBSF) system filled with different support materials including ceramic beads, macro-activated carbon cylinders and glass fiber balls was investigated. The results showed that the optimal support materials were the ceramic beads with diameters of 1–2 mm. Compared with the free cell fermentation system, lactic acid production and volumetric productivity in the PBSF system increased by 16.6 and 12.5%, respectively. Though the concentration of free cells decreased sharply, lactic acid production remained stable in five consecutive fed-batch runs using the PBSF system. pH gradients, immobilized cell concentration and mass diffusion in the packed bed were all affected by the recirculation rate of the culture broth. Maximum lactic acid production, productivity and yield occurred at a recirculation rate of 50 mL min−1.  相似文献   

2.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

3.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

4.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

5.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

6.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

7.
Effects of pH profiles on nisin fermentation coupling with foam separation   总被引:1,自引:0,他引:1  
Online foam separation was proposed to recover nisin during fermentation of Lactococcus lactis subsp. lactis ATCC 11454. Firstly, the optimal pH profile of nisin fermentation was investigated including different realkalization set values and pH drop gradients. Then the selected pH profiles of 5.75 ± 0.05 and 6.25–5.75 (±0.02) were used to perform nisin fermentation coupling with foam separation. The results showed that pH profile of 5.75 ± 0.05 was better than that of 6.25–5.75 (±0.02) for online foam separation. With the optimal pH profile, an aeration of 20 ml min−1 that started at 8 h of incubation and lasted for 2 h resulted in 6.6 times higher specific productivity than that of the fermentation without aeration. Nisin synthesis was therefore prolonged with low sucrose concentration in the culture broth, which indicated that the feedback inhibition of nisin is more influential than the substrate limitation of sucrose in the late phase of nisin fermentation. Total nisin production (4,870 ± 180 IU ml−1) was increased by 30.3% with online foam separation. This effective online recovery method for nisin production could be easily scaled up due to the facile operation of foaming process.  相似文献   

8.
Sophorolipids (SLs) are biosurfactants with widespread applications. The yield and purity of SLs are two important factors to be considered during their commercial large‐scale production. Notably, SL accumulation causes an increase in viscosity, decrease in dissolved oxygen and product inhibition in the fermentation medium. This inhibits the further production and purification of SLs. This describes the development of a novel integrated system for SL production using Candida albicans O‐13‐1. Semicontinuous fermentation was performed using a novel bioreactor with dual ventilation pipes and dual sieve‐plates (DVDSB). SLs were separated and recovered using a newly designed two‐stage separation system. After SL recovery, the fermentation broth containing residual glucose and oleic acid was recycled back into the bioreactor. This novel approach considerably alleviated the problem of product inhibition and accelerated the rate of substrate utilization. Production of SLs achieved was 477 g l?1, while their productivity was 1.59 g l?1 h?1. Purity of SLs improved by 23.3%, from 60% to 74%, using DVDSB with the separation system. The conversion rate of carbon source increased from 0.5 g g?1 (in the batch fermentation) to 0.6 g g?1. These results indicated that the integrated system could improve the efficiency of production and purity of SLs.  相似文献   

9.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

10.
Summary A novel method of lactic acid fermentation byLactobacillus casei immobilized in Ca—alginate gels is described, in which an ion—exchange resin packed column is attached to a fermentor for separation of lactic acid from fermentative broth. The technique successfully alleviated the restriction imposed by lactic acid on bacterial growth and product formation. As compared to the conventional batch fermentation, the new fermentation technique enhanced the lactic acid productivity and sugar conversion rate from 0.328g/L·h and 88. 2% to 0.482g/L·h and 98.6%, respectively.  相似文献   

11.
Yun JS  Wee YJ  Kim JN  Ryu HW 《Biotechnology letters》2004,26(20):1613-1616
Rice and wheat brans, without additional nutrients and hydrolyzed by alpha-amylase and amyloglucosidase, were fermented to DL-lactic acid using a newly isolated strain of Lactobacillus sp. RKY2. In batch fermentations at 36 degrees C and pH 6, the amount of lactic acid in fermentation broth reached 129 g l(-1) by supplementation of rice bran with whole rice flour. The maximum productivity was 3.1 g lactic acid l(-1) h(-1) in rice bran medium supplemented with whole rice flour or whole wheat flour.  相似文献   

12.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

13.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

14.
Ram horns are a waste material from the meat industry. The use of ram horn peptone (RHP) as a supplement for lactic acid production was investigated using Lactobacillus casei. For this purpose, first, RHP was produced. Ram horns were hydrolysed by treating with acids (3 M H2SO4 and 6 M HCl) and neutralizing the solutions to yield ram horn hydrolysate (RHH). The RHH was evaporated to yield RHP. The amounts of protein, nitrogen, ash, some minerals, total sugars, total lipids and amino acids of the RHP were determined and compared with a bacto-tryptone from casein. When the concentrations (1–6% w/v) of the RHP were used in bacterial growth medium as a supplement, 2% RHP (ram horn peptone medium) had a maximum influence on the production of lactic acid by L. casei. The content of lactic acid in the culture broth containing 2% RHP (43 g l–1) grown for 24 h was 30% higher than that of the control culture broth (33 g l–1) and 10% higher than that of 2% bacto-tryptone (39 g l–1). RHP was demonstrated to be a suitable supplement for production of lactic acid. This RHP may prove to be a valuable supplement in fermentation technology.  相似文献   

15.
An innovative consecutive batch fermentation process was developed for very high gravity (VHG) ethanol fermentation with the self-flocculating yeast under high biomass concentration conditions. On the one hand, the high biomass concentration significantly shortened the time required to complete the VHG fermentation and the duration of yeast cells suffering from strong ethanol inhibition, preventing them from losing viability and making them suitable for being repeatedly used in the process. On the other hand, the separation of yeast cells from the fermentation broth by sedimentation instead of centrifugation, making the process economically more competitive. The VHG medium composed of 255 g L−1 glucose and 6.75 g L−1 each of yeast extract and peptone was fed into the fermentation system for nine consecutive batch fermentations, which were completed within 8–14 h with an average ethanol concentration of 15% (v/v) and ethanol yield of 0.464, 90.8% of its theoretical value of 0.511. The average ethanol productivity that was calculated with the inclusion of the downstream time for the yeast flocs to settle from the fermentation broth and the supernatant to be removed from the fermentation system was 8.2 g L−1 h−1, much higher than those previously reported for VHG ethanol fermentation and regular ethanol fermentation with ethanol concentration around 12% (v/v) as well.  相似文献   

16.
The potential of an aqueous two-phase system composed of a polycation, poly(ethyleneimine) (PEI), and an uncharged polymer, (hydroxyethyl) cellulose (HEC), for extractive lactic acid fermentation was tested. Batch fermentation with 20 g/L glucose in two-phase medium using Lactococcus lactis without external pH control resulted in 3-4 times higher amount of lactate and biomass produced as compared to that in a conventional one-phase medium. Lactic acid was preferentially partitioned to the PEI-rich bottom phase. However, the cells which favored the HEC-rich top phase in a fresh two-phase medium were partitioned to a significant extent to the bottom phase after fermentation. Addition of phosphate buffer or pH adjustment to 6.5 after fermentation caused fewer cells to move to the bottom phase. With external pH control, fermentation in normal and two-phase medium showed no marked differences in glucose consumption and lactic acid yield, except that about 1.3 times higher cell density was obtained in the two-phase broth, especially at initial glucose concentrations of 50-100 g/L. Use of higher concentration of phosphate during batch fermentation in the two-phase medium with 50 g/L sugar provided a 15% higher yield of lactic acid, but the growth rate of cells was nearly half of the normal, thus affecting the productivity. Continuous fermentation with twice the normal phosphate concentration resulted in higher cell density, product yield, and productivity in two-phase medium than in monophasic medium. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
In white biotechnology research, the putative superiority of productive biofilms to conventional biotransformation processes based on planktonic cultures has been increasingly discussed in recent years. In the present study, we chose lactic acid production as a model application to evaluate biofilm potential. A pure culture of Lactobacillus bacteria was grown in a tubular biofilm reactor. The biofilm system was cultivated monoseptically in a continuous mode for more than 3 weeks. The higher cell densities that could be obtained in the continuous biofilm system compared with the planktonic culture led to a significantly increased space-time yield. The productivity reached 80% of the maximum value 10 days after start-up and no subsequent decline was observed, confirming the suitability of the system for long-term fermentation. The analysis of biofilm performance revealed that productivity increases with the flow velocity. This is explained by the reduced retention time of the liquid phase in the reactor, and, thus, a minor pH drop caused by the released lactic acid. At low flow velocities, the pH drops to a value where growth and production are significantly inhibited. The biofilm was visualized by magnetic resonance imaging to analyze biofilm thickness. To deepen the understanding of the biofilm system, we used a simple model for cell growth and lactic acid production.  相似文献   

18.
Klebsiella oxytoca M5al is an excellent 1,3-propanediol (1,3-PD) producer, but too much lactic acid yielded greatly lessened the fermentation efficiency for 1,3-PD. To counteract the disadvantage, four lactate deficient mutants were obtained by knocking out the ldhA gene of lactate dehydrogenase (LDH) of K. oxytoca M5al. The LDH activities of the four mutants were from 3.85 to 6.92% of the parental strain. The fed-batch fermentation of 1,3-PD by mutant LDH3, whose LDH activity is the lowest, was studied. The results showed that higher 1,3-PD concentration, productivity, and molar conversion rate from glycerol to 1,3-PD can be gained than those of the wild type strain and no lactic acid is produced under both anaerobic and microaerobic conditions. Sucrose fed during the fermentation increased the conversion and sucrose added at the beginning increased the productivity. In fed-batch fermentation with sucrose as cosubstrate under microaerobic conditions, the 1,3-PD concentration, conversion, and productivity were improved significantly to 83.56 g l−1, 0.62 mol mol−1, and 1.61 g l−1 h−1, respectively. Furthermore, 60.11 g l−1 2,3-butanediol was also formed as major byproduct in the broth.  相似文献   

19.
Production of lactic acid from paper sludge was studied using thermophilic Bacillus coagulan strains 36D1 and P4-102B. More than 80% of lactic acid yield and more than 87% of cellulose conversion were achieved using both strains without any pH control due to the buffering effect of CaCO3 in paper sludge. The addition of CaCO3 as the buffering reagent in rich medium increased lactic acid yield but had little effect on cellulose conversion; when lean medium was utilized, the addition of CaCO3 had little effect on either cellulose conversion or lactic acid yield. Lowering the fermentation temperature lowered lactic acid yield but increased cellulose conversion. Semi-continuous simultaneous saccharification and co-fermentation (SSCF) using medium containing 100 g/L cellulose equivalent paper sludge without pH control was carried out in serum bottles for up to 1000 h. When rich medium was utilized, the average lactic acid concentrations in steady state for strains 36D1 and P4-102B were 92 g/L and 91.7 g/L, respectively, and lactic acid yields were 77% and 78%. The average lactic acid concentrations produced using semi-continuous SSCF with lean medium were 77.5 g/L and 77.0 g/L for strains 36D1 and P4-102B, respectively, and lactic acid yields were 72% and 75%. The productivities at steady state were 0.96 g/L/h and 0.82 g/L/h for both strains in rich medium and lean medium, respectively. Our data support that B. coagulan strains 36D1 and P4-102B are promising for converting paper sludge to lactic acid via SSCF.  相似文献   

20.
The production of lactic acid from date juice by single and mixed cultures of Lactobacillus casei and Lactococcus lactis was investigated. In the present conditions, the highest concentration of lactic acid (60.3 g l−1) was obtained in the mixed culture system while in single culture fermentations of Lactobacillus casei or Lactococcus lactis, the maximum concentration of lactic acid was 53 and 46 g l−1, respectively. In the case of single Lactobacillus casei or Lactococcus lactis, the total percentage of glucose and fructose utilized were 82.2; 94.4% and 93.8; 60.3%, respectively, whereas in the case of mixed culture, the total percentage of glucose and fructose were 96 and 100%, respectively. These results showed that the mixed culture system gave better results than single cultures regarding lactic acid concentration, and sugar consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号