首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.

Methodology/Principal Findings

We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.

Conclusions/Significance

Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on the complete abolishment of spreading depolarizations.  相似文献   

2.
As more information becomes available regarding the role of inflammation following stroke, it is apparent that some inflammatory mediators are detrimental and others are beneficial to the progression of ischemic injury. Cortical spreading depression (CSD) is known to impart some degree of ischemic tolerance to the brain and to influence the expression of many genes. Many of the genes whose expression is altered by CSD are associated with inflammation, and it appears likely that modulation of the inflammatory response to ischemia by CSD contributes to ischemic tolerance. Understanding which inflammatory processes are influenced by CSD may lead to the identification of novel targets in the effort to develop an acute treatment for stroke.  相似文献   

3.
Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI) have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW) to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG) were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC) potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3–4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of the key events determining the outcome in bTBI. Furthermore, a rat exposed to an LISW(s) can be a reliable laboratory animal model for blast injury research.  相似文献   

4.
The phenomenon of spreading depression (SD) involves waves of profound neuronal and glial depolarization that spread throughout brain tissue. Under many conditions, tissue recovers full function after SD has occurred, but SD-like events are also associated with spread of injury following ischemia or trauma. Initial large cytosolic Ca2+ increases accompany all forms of SD, but persistently elevated Ca2+ loading is likely responsible for neuronal injury following SD in tissues where metabolic capacity is insufficient to restore ionic gradients. Ca2+ channels are also involved in the propagation of SD, but the channel subtypes and cation fluxes differ significantly when SD is triggered by different types of stimuli. Ca2+ influx via P/Q type channels is important for SD generated by localized application of high K+ solutions. In contrast, SD-like events recorded in in vitro ischemia models are not usually prevented by Ca2+ removal, but under some conditions, Zn2+ influx via L-type channels contributes to SD initiation. This review addresses different roles of Ca2+ in the initiation and consequences of SD, and discusses recent evidence that selective chelation of Zn2+ can be sufficient to prevent SD under circumstances that may have relevance for ischemic injury.  相似文献   

5.
Brain hemorrhage is a serious complication of tissue plasminogen activator (tPA) therapy for ischemic stroke. Here we report that activated protein C (APC), a plasma serine protease with systemic anticoagulant, anti-inflammatory and antiapoptotic activities, and direct vasculoprotective and neuroprotective activities, blocks tPA-mediated brain hemorrhage after transient brain ischemia and embolic stroke in rodents. We show that APC inhibits a pro-hemorrhagic tPA-induced, NF-kappaB-dependent matrix metalloproteinase-9 pathway in ischemic brain endothelium in vivo and in vitro by acting through protease-activated receptor 1. The present findings suggest that APC may improve thrombolytic therapy for stroke, in part, by reducing tPA-mediated hemorrhage.  相似文献   

6.
Wang X  Lee SR  Arai K  Lee SR  Tsuji K  Rebeck GW  Lo EH 《Nature medicine》2003,9(10):1313-1317
Although thrombolysis with tissue plasminogen activator (tPA) is a stroke therapy approved by the US Food and Drug Administration, its efficacy may be limited by neurotoxic side effects. Recently, proteolytic damage involving matrix metalloproteinases (MMPs) have been implicated. In experimental embolic stroke models, MMP inhibitors decreased cerebral hemorrhage and injury after treatment with tPA. MMPs comprise a family of zinc endopeptidases that can modify several components of the extracellular matrix. In particular, the gelatinases MMP-2 and MMP-9 can degrade neurovascular matrix integrity. MMP-9 promotes neuronal death by disrupting cell-matrix interactions, and MMP-9 knockout mice have reduced blood-brain barrier leakage and infarction after cerebral ischemia. Hence it is possible that tPA upregulates MMPs in the brain, and that subsequent matrix degradation causes brain injury. Here we show that tPA upregulates MMP-9 in cell culture and in vivo. MMP-9 levels were lower in tPA knockouts compared with wild-type mice after focal cerebral ischemia. In human cerebral microvascular endothelial cells, MMP-9 was upregulated when recombinant tPA was added. RNA interference (RNAi) suggested that this response was mediated by the low-density lipoprotein receptor-related protein (LRP), which avidly binds tPA and possesses signaling properties. Targeting the tPA-LRP signaling pathway in brain may offer new approaches for decreasing neurotoxicity and improving stroke therapy.  相似文献   

7.
Cortical spreading depression (CSD) has been observed during the early phase of subarachnoid hemorrhage (SAH). However, the effect of CSD on the cerebral blood flow (CBF) and cerebral oxyhemoglobin (CHbO) during the early phase of SAH has not yet been assessed directly. We, therefore, used laser speckle imaging and optical intrinsic sinal imaging to record CBF and CHbO during CSD and cerebral cortex perfusion (CCP) at 24 hours after CSD in a mouse model of SAH. SAH was induced by blood injection into the prechiasmatic cistern. When CSD occurred, the change trend of CBF and CHbO in Sham group and SAH group was the same, but ischemia and hypoxia in SAH group was more significant. At 24 hours after SAH, the CCP of CSD group was lower than that of no CSD group, and the neurological function score of CSD group was lower. We conclude that induction of CSD further aggravates cerebral ischemia and worsens neurological dysfunction in the early stage of experimental SAH. Our study underscores the consequence of CSD in the development of early brain injury after SAH.  相似文献   

8.
Using a "slit camera" recording technique, we have examined the effects of local laser irradiation of cilia of the gill epithelium of Mytilus edulis. The laser produces a lesion which interrupts epithelial integrity. In artificial sea water that contains high K+ or is effectively Ca++ free, metachronism of the lateral cilia continues to either side of the lesion with only minor perturbations in frequency synchronization and wave velocity, such as would be expected if metachronal wave coordination is mechanical. However, in normal sea water and other appropriate ionic conditions (i.e., where Ca++ concentration is elevated), in addition to local damage, the laser induces distinct arrest responses of the lateral cilia. Arrest is not mechanically coordinated, since cilia stop in sequence depending on stroke position as well as distance from the lesion. The velocity of arrest under standard conditions is about 3 mm/s, several orders of magnitude faster than spreading velocities associated with diffusion of materials from the injured region. Two responses can be distinguished on the basis of the kinetics of recovery of the arrested regions. These are (a) a nondecremental response that resembles spontaneous ciliary stoppage in the gills, and (b) a decremental response, where arrest nearer the stimulus point is much longer lasting. The slower recovery is often periodic, with a step size approximating lateral cell length. Arrest responses with altered kinetics also occur in laterofrontal cilia. The responses of Mytilus lateral cilia resemble the spreading ciliary arrest seen in Elliptio and arrest induced by electrical and other stimuli, and the decremental response may depend upon electrotonic spread of potential change produced at the stimulus site. If this were coupled to transient changes in Ca++ permeability of the cell membrane, a local rise in Ca++ concentration might inhibit ciliary beat at a sensitive point in the stroke cycle to produce the observed arrest.  相似文献   

9.
Brain ischemia often results in neuronal necrosis, which may spread death to neighboring cells. However, the molecular events of neuronal necrosis and the mechanisms of this spreading death are poorly understood due to the limited genetic tools available for deciphering complicated responses in mammalian brains. Here, we engineered a Drosophila model of necrosis in a sub-population of neurons by expressing a leaky cation channel in the Drosophila eye. Expression of this channel caused necrosis in defined neurons as well as extensive spreading of cell death. Jun N-terminal kinase (JNK)-mediated, caspase-independent apoptosis was the primary mechanism of cell death in neurons, while caspase-dependent apoptosis was primarily involved in non-neuronal cell death. Furthermore, the JNK activation in surrounding neurons was triggered by reactive oxygen species (ROS) and Eiger (Drosophila tumor necrosis factor α (TNFα)) released from necrotic neurons. Because the Eiger/ROS/JNK signaling was also required for cell death induced by hypoxia and oxidative stress, our fly model of spreading death may be similar to brain ischemia in mammals. We performed large-scale genetic screens to search for novel genes functioning in necrosis and/or spreading death, from which we identified several classes of genes. Among them, Rho-associated kinase (ROCK) had been reported as a promising drug target for stroke treatment with undefined mechanisms. Our data indicate that ROCK and the related trafficking pathway genes regulate neuronal necrosis. We propose the suppression of the function of the trafficking system, ROS and cytokines, such as TNFα, as translational applications targeting necrosis and spreading death.  相似文献   

10.
11.
Astrocytes and stroke: networking for survival?   总被引:14,自引:0,他引:14  
Astrocytes are now known to be involved in the most integrated functions of the central nervous system. These functions are not only necessary for the normally working brain but are also critically involved in many pathological conditions, including stroke. Astrocytes may contribute to damage by propagating spreading depression or by sending proapoptotic signals to otherwise healthy tissue via gap junction channels. Astrocytes may also inhibit regeneration by participating in formation of the glial scar. On the other hand, astrocytes are important in neuronal antioxidant defense and secrete growth factors, which probably provide neuroprotection in the acute phase, as well as promoting neurogenesis and regeneration in the chronic phase after injury. A detailed understanding of the astrocytic response, as well as the timing and location of the changes, is necessary to develop effective treatment strategies for stroke patients.  相似文献   

12.
Diffusion-weighted nuclear magnetic resonance (NMR) imaging (DWI) is sensitive to the random translational motion of water molecules due to Brownian motion. Although the mechanism is still not completely understood, the cellular swelling that accompanies cell membrane depolarization results in a reduction in the net displacement of diffusing water molecules and thus a concomitant reduction in the apparent diffusion coefficient (ADC) of tissue water. Cerebral regions of reduced ADC appear hyperintense in a DWI and this technique has been used extensively to study acute stroke. In addition to cerebral ischemia, reductions in the ADC of cerebral water have been observed following cortical spreading depression, ischemic depolarizations (IDs), transient ischemic attack (TIA), status epilepticus, and hypoglycemia. Although the mechanism responsible for initiating membrane depolarization varies in each case, the ensuing cell volume changes follow a similar pattern. Water ADC values are also affected by the presence and orientation of barriers to translational motion (such as cell membranes and myelin fibers) and thus NMR measures of anisotropic diffusion are sensitive to more chronic pathological states where the integrity of these structures is modified by disease. Both theoretical prediction and experimental evidence suggest that the ADC of tissue water is related to the volume fraction of the interstitial space via the electrical conductivity of the tissue. The implication is that acute neurological disorders that exhibit electrical conductivity changes should also exhibit ADC changes that are detectable by DWI. A qualitative correlation between electrical conductivity and the ADC of water has been demonstrated in a number of animal model studies and the results indicate that reduced ADC values are associated with reductions in the extracellular volume fraction and increased extracellular tortuosity. The close relationship between ADC changes and cell volume changes in various pathological states suggests that NMR measurements are also sensitive to chemical communication between cells through the extracellular space (i.e., extrasynaptic or volume transmission, VT).  相似文献   

13.
14.
In most Lepidoptera, plasmatocytes and granulocytes are the two hemocyte classes capable of adhering to foreign targets. Previously, we identified plasmatocyte spreading peptide (PSP1) from the moth Pseudoplusia includens and reported that it induced plasmatocytes to rapidly spread on foreign surfaces. Here we examine whether the response of plasmatocytes to PSP1 was influenced by cell density or culture conditions, and whether PSP1 affected the adhesive state of granulocytes. Plasmatocyte spreading rates were clearly affected by cell density in the absence of PSP1 but spreading was density independent in the presence of PSP1. PSP1 also induced plasmatocytes in agarose-coated culture wells to form homotypic aggregations rather than spread on the surface of culture wells. In contrast, granulocytes rapidly spread in a density independent manner in the absence of PSP1, but were dose-dependently inhibited from spreading by the addition of peptide. An anti-PSP1 polyclonal antibody neutralized the spreading activity of synthetic PSP1. This antibody also neutralized the plasmatocyte spreading activity of granulocyte-conditioned medium, and significantly delayed plasmatocyte spreading when cells were cultured at a high density in unconditioned medium. These results suggested that the spreading activity derived from granulocytes is due in part to PSP1. Pretreatment of plasmatocytes with trypsin had no effect on PSP1-induced aggregation but PSP1-induced aggregations were readily dissociated by trypsin. This suggested that PSP1 is not an adhesion factor but induces adhesion by stimulating a change in the cell surface of plasmatocytes. Synthetic PSP1 also induced aggregation of plasmatocytes from other Lepidoptera indicating that regulation of hemocyte activity by PSP1-related peptides may be widespread. Arch.  相似文献   

15.
Traumatic brain injuries (TBIs) are potentially lethal medical conditions, with symptoms that can overlap with symptoms of injuries outside the brain. In many cases, current diagnostic methods do not fully distinguish acute brain injury from other organ damage. In the management of stroke patients, the choice of treatment depends on whether the stroke is ischemic or hemorrhagic; however, no quick lab diagnostic tests are available to distinguish between the two types of strokes. As a result, patient triage, disposition, and patient management decisions may be delayed for patients with suspected TBI and stroke. Glial fibrillary acidic protein (GFAP), a brain-specific biomarker that is released into the blood following TBI and stroke, is being explored for potential diagnostic and prognostic value in these indications. We therefore conducted a review of MEDLINE-indexed publications from 2004 to 2011 to evaluate the current status of GFAP as a prognostic and diagnostic tool for TBI and stroke within the context of current published guidelines. Our review suggests that GFAP could provide clinically valuable information for the prognosis of TBI and stroke, but it is still at an early stage of development as a biomarker. Several TBI studies have shown elevated GFAP levels following a TBI event to be associated with greater severity of injury, poorer outcomes, and increased mortality. Clinical studies also indicate that GFAP has potential clinical utility in the differential diagnosis of various types of stroke. However, more clinical research will be required to determine the ability of GFAP levels to diagnose TBI in heterogeneous patient populations, as well as the ability of GFAP to differentiate between ischemic stroke (IS), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and non-stroke conditions in populations of patients with suspected rather than confirmed stroke. Additional clinical studies will also be required to define the temporal patterns of GFAP release in IS, ICH, SAH, and TBI, and their potential use in the differential diagnosis of these conditions. Finally, such research could demonstrate the ability of GFAP test results to provide unique clinical information that informs management decisions for TBI and stroke patients.  相似文献   

16.
Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.  相似文献   

17.
Endothelial influences on cerebrovascular tone.   总被引:5,自引:0,他引:5  
The cerebrovascular endothelium exerts a profound influence on cerebral vessels and cerebral blood flow. This review summarizes current knowledge of various dilator and constrictor mechanisms intrinsic to the cerebrovascular endothelium. The endothelium contributes to the resting tone of cerebral arteries and arterioles by tonically releasing nitric oxide (NO*). Dilations can occur by stimulated release of NO*, endothelium-derived hyperpolarization factor, or prostanoids. During pathological conditions, the dilator influence of the endothelium can turn to that of constriction by a variety of mechanisms, including decreased NO* bioavailability and release of endothelin-1. The endothelium may participate in neurovascular coupling by conducting local dilations to upstream arteries. Further study of the cerebrovascular endothelium is critical for understanding the pathogenesis of a number of pathological conditions, including stroke, traumatic brain injury, and subarachnoid hemorrhage.  相似文献   

18.
《The Journal of cell biology》1983,96(5):1234-1240
We investigated the role of sodium in megakaryocyte spreading induced by thrombin and ADP. We found that if extracellular sodium was replaced by lithium, potassium, or choline, spreading was inhibited. When extracellular sodium was present, amiloride or tetrodotoxin inhibited spreading. Using intracellular recording we found spreading to be associated with a permanent membrane depolarization. The extent and rate of thrombin-induced depolarization was reduced when lithium replaced sodium. Unspread cells had an average membrane potential of - 44.8 mV. Spread cells had an average membrane potential of -18.46 mV. When choline replaced sodium, or when in the presence of tetrodotoxin and amiloride, the spread cells repolarized, indicating that the depolarization is due to an increase in sodium permeability. Similar treatments did not change the membrane potential of unspread cells. Incubation of megakaryocytes with A23187 together with monensin or methylamine induced spreading. Methylamine occasionally caused spreading by itself, but neither ionophore alone caused spreading. These results indicate that megakaryocyte spreading induced by ADP and thrombin depends on an increase in sodium conductance.  相似文献   

19.
An alkaline, followed by an acid-going transient, characterizes acid-base changes in the interstitial space during spreading depression in a variety of brain structures. In rat, such changes are associated with a significant rise in brain lactate content. How brain proton buffers behave during spreading depression is unknown. Techniques to significantly improve the response time of gas permeable membrane semimicroelectrodes for carbon dioxide and ammonia are reported. Measurements with such electrodes, when coupled to measurements of hydrogen ion concentration (from microelectrodes), permit rapid changes to be determined in bicarbonate concentration or ammonia and ammonium ion concentration, respectively. Bicarbonate concentration fell from 30 +/- 1 (n = 16) to 14 +/- 1 mM (n = 16) during spreading depression. On the other hand, ammonia concentration rose from 2.3 +/- 0.1 to 4.4 +/- 0.3 microM (n = 17) while ammonium ion concentration rose from 116 +/- 11 (n = 17) to 382 +/- 30 microM (n = 17) during spreading depression. Bicarbonate changes probably reflect titration of brain bicarbonate stores by accumulated lactic acid. Similar physicochemical changes do not explain the rise in ammonia and ammonium ion concentrations. Instead, elevation of the latter can only result from an increase in ammonia content of the interstitial space.  相似文献   

20.
Spreading depression (SD) has been linked to several neurological disorders as epilepsy, migraine aura, trauma, and cerebral ischemia, which were also influenced by disorderliness of the brain redox homeostasis. To investigate whether local tissue oxidation directly induces SD, we oxidized a restricted local area of the rat cerebral cortex using photo-dynamic tissue oxidation (PDTO) technique and examined the cerebral blood flow (CBF) and direct current (DC) potential in and around the oxidized area. Intensive PDTO induced prolonged depolarization only in the photo-oxidized area, which led to global changes of CBF and DC potential: synchronous negative shifts of DC potential (with an amplitude of approximately 20 mV) and hyperperfusion of CBF occurred. The changes in DC potential and CBF spread at a rate of around 3mm/min beyond the oxidized area to the whole hemisphere of the cerebral cortex, indicating that intensive local oxidation induces SD in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号