首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions. Human MSC secretions were collected as conditioned medium (MSC-CM) using a clinically compliant protocol. Based on proteomic and pathway analysis of MSC-CM, an in vitro assay of HUVEC spheroids was performed identifying the angiogenic properties of MSC-CM. Subsequently, pigs were subjected to surgical left circumflex coronary artery ligation and randomized to intravenous MSC-CM treatment or non-CM (NCM) treatment for 7 days. Three weeks after MI, myocardial capillary density was higher in pigs treated with MSC-CM (645 ± 114 vs 981 ± 55 capillaries/mm(2); P = 0.021), which was accompanied by reduced myocardial infarct size and preserved systolic and diastolic performance. Intravenous MSC-CM treatment after myocardial infarction increases capillary density and preserves cardiac function, probably by increasing myocardial perfusion.  相似文献   

2.
Mesenchymal stem cells (MSCs) are pluripotent cells that differentiate into a variety of cells, including cardiomyocytes and endothelial cells. However, little information is available regarding the therapeutic potency of systemically delivered MSCs for myocardial infarction. Accordingly, we investigated whether intravenously transplanted MSCs induce angiogenesis and myogenesis and improve cardiac function in rats with acute myocardial infarction. MSCs were isolated from bone marrow aspirates of isogenic adult rats and expanded ex vivo. At 3 h after coronary ligation, 5 x 10(6) MSCs (MSC group, n=12) or vehicle (control group, n=12) was intravenously administered to Lewis rats. Transplanted MSCs were preferentially attracted to the infarcted, but not the noninfarcted, myocardium. The engrafted MSCs were positive for cardiac markers: desmin, cardiac troponin T, and connexin43. On the other hand, some of the transplanted MSCs were positive for von Willebrand factor and formed vascular structures. Capillary density was markedly increased after MSC transplantation. Cardiac infarct size was significantly smaller in the MSC than in the control group (24 +/- 2 vs. 33 +/- 2%, P <0.05). MSC transplantation decreased left ventricular end-diastolic pressure and increased left ventricular maximum dP/dt (both P <0.05 vs. control). These results suggest that intravenous administration of MSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium.  相似文献   

3.
Cardiovascular diseases are the number one cause of death globally and are projected to remain the single leading cause of death. Treatment options abounds, although efficacy is limited. Recent studies attribute discrete and ephemeral benefits to adult stem cell therapies, indicating the urge to improve stem cell based–therapy. In this study, we show that priming mesenchymal stem cells (MSC) towards cardiomyogenic lineage enhances their beneficial effects in vivo as treatment option for acute phase myocardial infarction. MSC were primed using cardiomyogenic media for 4 days, after which peak expression of key cardiomyogenic genes are reached and protein expression of Cx‐43 and sarcomeric α‐actinin are observed. MSC and primed MSC (pMSC) were characterized in vitro and used to treat infarcted rats immediately after left anterior descending (LAD) occlusion. Echocardiography analysis indicated that MSC‐treated myocardium presented discrete improvement in function, but it also showed that pMSC treatment lead to superior beneficial results, compared with undifferentiated MSC. Seven days after cell injection, MSC and pMSC could still be detected in the myocardium. Connexin‐43 expression was quantified through immunoblotting, and was superior in pMSC, indicating that this could be a possible explanation for the superior performance of pMSC therapy.  相似文献   

4.
5.
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.  相似文献   

6.
Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin‐10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow‐derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen‐glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10‐MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10‐MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10‐MSC treatment. IL10 overexpression and MSC may exert a synergistic anti‐inflammatory effect to alleviate cardiac injury after MI.  相似文献   

7.
Apela was recently identified as a new ligand of the apelin peptide jejunum (APJ) receptor. The purpose of this study was to investigate the role of apela in post‐myocardial infarction (post‐MI) recovery from cardiorenal damage. A murine MI model was established, and apela was then infused subcutaneously for two weeks. Echocardiographs were performed before and after infarction at the indicated times. Renal function was evaluated by serum and urine biochemistry. Immunohistochemistry of heart and kidney tissue was performed by in situ terminal deoxynucleotidyl transferase‐mediated dUPT nick end‐labelling reaction. Compared to the control group (MI/vehicle), the average value of the left ventricular ejection fraction in apela‐treated mice increased by 32% and 39% at 2‐ and 4‐week post‐MI, respectively. The mean levels of serum blood urea nitrogen,creatinine, N‐terminal pro‐brain natriuretic peptide and 24‐hour urine protein were significantly decreased at 4‐week post‐MI in apela‐treated mice relative to that of control animals. At the cellular level, we found that apela treatment significantly reduced myocardial fibrosis and cellular apoptosis in heart and kidney tissue. These data suggest that apela improves cardiac and renal function in mice with acute MI. The peptide may be potential therapeutic agent for heart failure.  相似文献   

8.
《Cytotherapy》2021,23(12):1074-1084
Background aimsMesenchymal stromal cells (MSCs) have been shown to improve cardiac function after injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regenerative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical trials.MethodsFour days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group (n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total of 5 × 106 cells were injected at three sites within the infarcted left ventricular (LV) wall.ResultsOne month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiography) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sustained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits.ConclusionsThe authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myocardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an “off-the-shelf” stem cell therapy for cardiac repair.  相似文献   

9.
Progress in stem cell transplantation for the treatment of myocardial infarction is hampered by the poor retention and survival of the implanted cells. To enhance cell survival and differentiation and thereby improve the efficiency of stem cell therapy, we constructed a novel self-assembling peptide by attaching an RGDSP cell-adhesion motif to the self-assembling peptide RADA16. c-kitpos/Nkx2.5low/GATA4low marrow-derived cardiac stem cells (MCSCs), which have a specific potential to differentiate into cardiomyocytes, were isolated from rat bone marrow. The cytoprotective effects of RGDSP scaffolds were assessed by exposure of MCSCs to anoxia in vitro. The efficacy of transplanting MCSCs in RGDSP scaffolds was evaluated in a female rat MI model. The designer self-assembling peptide self-assembled into RGDSP nanofiber scaffolds under physiological conditions. RGDSP scaffolds were beneficial for the growth of MCSCs and protected them from apoptosis and necrosis caused by anoxia. In a rat MI model, cardiac function was improved and collagen deposition was markedly reduced in the group receiving MCSCs in RGDSP scaffolds compared with groups receiving MCSCs alone, RGDSP scaffolds alone or MCSCs in RADA16 scaffolds. There were more surviving MCSCs in the group receiving MCSCs in RGDSP scaffolds than in the groups receiving MCSCs alone or MCSCs in RADA16 scaffolds. Most of the Y chromosome-positive cells expressed cardiac troponin T and connexin43 (Cx-43). These results suggest that RGDSP scaffolds provide a suitable microenvironment for the survival and differentiation of MCSCs. RGDSP scaffolds enhanced the efficacy of MCSC transplantation to repair myocardium and improve cardiac function.  相似文献   

10.
Exosomes extracted from mesenchymal stem cells (MSCs) was reported to reduce myocardial ischemia/reperfusion damage. Besides, stromal-derived factor 1 (SDF1a) functions as cardiac repair after myocardial infarction (MI). Therefore, the present study aims to identify whether exosomes (Exo) released from SDF1-overexpressing MSCs display a beneficial effect on ischemic myocardial infarction. Initially, a gain-of-function study was performed to investigate the function of SDF1 in ischemic myocardial cells and cardiac endothelial cells. Coculture experiments were performed to measure potential exosomic transfer of SDF1 from MSCs to ischemic myocardial cells and cardiac endothelial cells. During the coculture experiments, exosome secretion was disrupted by neutral sphingomyelinase inhibitor GW4869 and upregulated exosomal SDF1 using SDF1 plasmid. Effects of Exo-SDF1 on cardiac function in MI mice were investigated in vivo. MSCs suppressed myocardial cell apoptosis and promoted microvascular regeneration of endothelial cells through secretion of exosomes. The addition of GW4869 led to increased apoptotic capacity of myocardial cells, decreased microvascular formation ability of endothelial cells, enhanced autophagy ability, and elevated Beclin-1 level as well as ratio of LC3II/LC3I. Overexpression of SDF1 and Exo-SDF1 inhibited apoptosis and autophagy of myocardial cells, but promoted tube formation of endothelial cells. The interference of PI3K signaling pathway promoted apoptosis and autophagy of myocardial cells, but inhibited tube formation of endothelial cells. SDF1 activated the PI3K signaling pathway. Exo-SDF1 protected cardiac function of MI mice and inhibited myocardial tissue damage. This study provided evidence that SDF1 overexpression in MSCs-derived exosomes inhibited autophagy of ischemic myocardial cells and promoted microvascular production of endothelial cells.  相似文献   

11.

Background

The heart produces apolipoprotein-B containing lipoproteins (apoB) whose function is not well understood. The aim of this study was to evaluate importance of myocardial apoB for cardiac function, structure and survival in myocardial infarction (MI) and heart failure (HF).

Methods and results

MI was induced in mice (n = 137) and myocardial apoB content was measured at 30 min, 3, 6, 24, 48, 120 h and 8 weeks post-MI. Transgenic mice overexpressing apoB (n = 27) and genetically matched controls (n = 27) were used to study the effects of myocardial apoB on cardiac function, remodeling, arrhythmias and survival after MI. Echocardiography was performed at rest and stress conditions at baseline, 2, 4 and 6 week post-MI and cumulative survival rate was registered. The myocardial apoB content increased both in the injured and the remote myocardium (p < 0.05) in response to ischemic injury. ApoB mice had 2-fold higher survival rate (p < 0.05) and better systolic function (p < 0.05) post-MI.

Conclusion

Overexpression of apoB in the heart increases survival and improves cardiac function after acute MI. Myocardial apoB may be an important cardioprotective system in settings such as myocardial ischemia and HF.  相似文献   

12.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI.  相似文献   

13.
Background Previous study demonstrated the improvement of cardiac function was proportional to the number of cells implanted. Therefore, increasing cell survival in the infarcted myocardium might contribute to the improvement of the functional benefit of cell transplantation. Methods and results MSCs were treated with IGF-1 in vitro and infused into the acute myocardial infarction rats via the tail vein. After treatment of MSCs with IGF-1 for 48 h, flow cytometric analysis showed marked enhancement of expression of CXCR4 in the cell surface. After 4 weeks of transplantation, we found 1) a greater number of engrafted MSCs arrived and survived in the peri-infarct region; 2) TnT protein expression and capillary density were enhanced; 3) LV cavitary dilation, transmural infarct thinning, deposition of total collagen in the peri-infarct region and cardiac dysfunction were attenuated. Conclusion 1) IGF-1 treatment has time-dependent and dose-dependent effects on CXCR4 expression in MSCs in vitro. 2) IGF-1 improves the efficacy of MSCs transplantation in a rat model of myocardial infarction mainly via enhancement of the number of cells attracted into the infarcted heart. These findings provide a novel stem cell therapeutic avenue against ischemic heart disease.  相似文献   

14.
Chen J  Wang C  Lü S  Wu J  Guo X  Duan C  Dong L  Song Y  Zhang J  Jing D  Wu L  Ding J  Li D 《Cell and tissue research》2005,319(3):429-438
The purpose of this study has been to investigate the possible effects of the normal joint cavity environment on chondrocytic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Autologous bone marrow was aspirated from the iliac crest of male sheep. MSCs were purified, expanded, and labeled with the fluorescent dye PKH26. Labeled MSCs were then grown on a three-dimensional porous scaffold of poly (L-lactic-co-glycolic acid) in vitro and implanted into the joint cavity by a surgical procedure. At 4 or 8 weeks after implantation, the implants were removed for histochemical and immunohistochemical analysis. The cells labeled with red fluorescent PKH26 in the implants expressed type II collagen and synthesized sulfated proteoglycans. However, the osteoblast-specific marker, osteocalcin, was not detected by immunohistochemistry indicating that the implanted MSCs had not differentiated into osteoblasts by being directly exposed to the normal joint cavity. To investigate the possible factors involved in chondrocytic differentiation of MSCs further, we co-cultured sheep MSCs with the main components of the normal joint cavity, viz., synovial fluid or synovial cells, in vitro. After 1 or 2 weeks of co-culture, the MSCs in both co-culture systems expressed markers of chondrogenesis. These results suggest that synovial fluid and synovium from normal joint cavity are important for the chondrocytic differentiation of adult bone-marrow-derived MSCs.This work was supported by the National Natural Science Foundation of China (nos. 39900036, 20174006, and 20221402), the National Advanced Technology Programs of China (nos. 2003AA744051, 2003AA205041), the Award Foundation for Young Teachers from the Ministry of Education, 973 project (no. G1999054306-03), and the 248 key innovative project of Beijing (no. H010210190123).  相似文献   

15.
16.
The poor survival of stem cells seriously limits their therapeutic efficacy for myocardial infarction (MI). Mineralocorticoid receptor (MR) activation plays an important role in the pathogenesis of multiple cardiovascular diseases. Here, we examined whether MR silencing in bone marrow derived mesenchymal stem cells (MSCs) could improve MSCs’ survival and enhance their cardioprotective effects in MI. MSCs from male Sprague‐Dawley rats were transfected with adenoviral small interfering RNA to silence MR (siRNA‐MR). MR silencing decreased hypoxia‐induced MSCs’ apoptosis, as demonstrated by Annexin V/7‐AAD staining. The mechanisms contributing to the beneficial effects of MR depletion were associated with inhibiting intracellular reactive oxygen species production and increased Bcl‐2/Bax ratio. In vivo study, 1 × 106 of MSCs with or without siRNA‐MR were injected into rat hearts immediately after MI. Depletion of MR could improve the MSCs’ survival significantly in infarcted myocardium, associated with more cardiac function improvement and smaller infarct size. Capillary density were also significantly higher in siRNA group with increased expression of vascular endothelial growth factor. Our study demonstrated that silencing MR promoted MSCs’ survival and repair efficacy in ischaemic hearts. MR might be a potential target for enhancing the efficacy of cell therapy in ischaemic heart disease.  相似文献   

17.
Mesenchymal stem cells (MSCs) can be used in adult stem cell-based gene therapy for vascular diseases. To test the hypothesis that MSCs alone or endothelial nitric oxide synthase (eNOS)-modified MSCs can be used for treatment of erectile dysfunction (ED), syngeneic rat MSCs (rMSCs) were isolated, ex vivo expanded, transduced with adenovirus containing eNOS, and injected into the penis of aged rats. Histological analysis demonstrated that rMSCs survived for at least 21 days in corporal tissue after intracavernous injection, and an inflammatory response was not induced. Intracavernous administration of eNOS-modified rMSCs improved the erectile response in aged rats at 7 and 21 days after injection. The increase in erectile function was associated with increased eNOS protein, NOS activity, and cGMP levels. rMSCs alone increased erectile function of aged rats at day 21, but not at day 7, with the transplanted cells exhibiting positive immunostaining for several endothelial and smooth muscle cell markers. This change in rMSC phenotype was accompanied by upregulation of penile eNOS protein expression/activity and elevated cGMP levels. These findings demonstrate that an adenovirus can be used to transduce ex vivo expanded rMSCs to express eNOS and that eNOS-modified rMSCs improve erectile function in the aged rat. Intracavernous injection of unmodified wildtype rMSCs improved erectile function 21 days after injection through mechanisms involving improved endothelium-derived NO/cGMP signaling and rMSC differentiation into penile cells expressing endothelial and smooth muscle markers. These data highlight the potential clinical use of adult stem cell-based therapy for the treatment of ED.  相似文献   

18.
Maternal ageing is one of the major causes of reduced ovarian reserve and low oocyte quality in elderly women. Decreased oocyte quality is the main cause of age‐related infertility. Mitochondria are multifunctional energy stations that determine the oocyte quality. The mitochondria in aged oocytes display functional impairments with mtDNA damage, which leads to reduced competence and developmental potential of oocytes. To improve oocyte quality, mitochondrial supplementation is carried out as a potential therapeutic approach. However, the selection of suitable cells as the source of mitochondria remains controversial. We cultivated endometrial mesenchymal stem cells (EnMSCs) from aged mice and extracted mitochondria from EnMSCs. To improve the quality of oocytes, GV oocytes were supplemented with mitochondria via microinjection. And MII oocytes from aged mice were fertilized by intracytoplasmic sperm injection (ICSI), combining EnMSCs'' mitochondrial microinjection. In this study, we found that the mitochondria derived from EnMSCs could significantly improve the quality of aged oocytes. Supplementation with EnMSC mitochondria significantly increased the blastocyst ratio of MII oocytes from aged mice after ICSI. We also found that the birth rate of mitochondria‐injected ageing oocytes was significantly increased after embryo transplantation. Our study demonstrates that supplementation with EnMSC‐derived mitochondria can improve the quality of oocytes and promote embryo development in ageing mice, which might provide a prospective strategy for clinical treatment.

In this study, we chose endometrial mesenchymal stem cells (EnMSCs) as the sources of mitochondria. We isolated the EnMSCs from 10‐month‐old mice and then extracted the mitochondria of EnMSCs. Then, the GV oocytes and MII oocytes from aged mice were injected with mitochondria. We found that mitochondria derived from EnMSCs could significantly improve the quality of oocytes, promote the embryonic development and improve the birth rates of aged mice.  相似文献   

19.
The methods currently utilized to track stem cells by cardiac MRI are affected by important limitations, and new solutions are needed. We tested human ferritin heavy chain (hFTH) as a reporter gene for in vivo tracking of stem cells by cardiac MRI. Swine cardiac stem/progenitor cells were transduced with a lentiviral vector to overexpress hFTH and cultured to obtain cardiospheres (Cs). Myocardial infarction was induced in rats, and, after 45 min, the animals were subjected to intramyocardial injection of ~200 hFTH-Cs or nontransduced Cs or saline solution in the border zone. By employing clinical standard 1.5-Tesla MRI scanner and a multiecho T2* gradient echo sequence, we localized iron-accumulating tissue only in hearts treated with hFTH-Cs. This signal was detectable at 1 wk after infarction, and its size did not change significantly after 4 wk (6.33 ± 3.05 vs. 4.41 ± 4.38 mm(2)). Cs transduction did not affect their cardioreparative potential, as indicated by the significantly better preserved left ventricular global and regional function and the 36% reduction in infarct size in both groups that received Cs compared with control infarcts. Prussian blue staining confirmed the presence of differentiated, iron-accumulating cells containing mitochondria of porcine origin. Cs-derived cells displayed CD31, α-smooth muscle, and α-sarcomeric actin antigens, indicating that the differentiation into endothelial, smooth muscle and cardiac muscle lineage was not affected by ferritin overexpression. In conclusion, hFTH can be used as a MRI reporter gene to track dividing/differentiating stem cells in the beating heart, while simultaneously monitoring cardiac morpho-functional changes.  相似文献   

20.
Longitudinal monitoring of cells is required in order to understand the role of delivered stem cells in therapeutic neovascularization. However, there is not an imaging technique that is capable of quantitative, longitudinal assessment of stem cell behaviors with high spatial resolution and sufficient penetration depth. In this study, in vivo and in vitro experiments were performed to demonstrate the efficacy of ultrasound-guided photoacoustic (US/PA) imaging to monitor mesenchymal stem cells (MSCs) labeled with gold nanotracers (Au NTs). The Au NT labeled MSCs, injected intramuscularly in the lower limb of the Lewis rat, were detected and spatially resolved. Furthermore, our quantitative in vitro cell studies indicate that US/PA imaging is capable of high detection sensitivity (1×10? cells/mL) of the Au NT labeled MSCs. Finally, Au NT labeled MSCs captured in the PEGylated fibrin gel system were imaged in vivo, as well as in vitro, over a one week time period, suggesting that longitudinal cell tracking using US/PA imaging is possible. Overall, Au NT labeling of MSCs and US/PA imaging can be an alternative approach in stem cell imaging capable of noninvasive, sensitive, quantitative, longitudinal assessment of stem cell behaviors with high spatial and temporal resolutions at sufficient depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号