共查询到20条相似文献,搜索用时 0 毫秒
1.
CRISPR-Cas系统是存在于部分细菌和绝大部分古细菌中的一种获得性免疫防御系统,使细菌在外源性基因入侵时具有免疫防御能力。此外,CRISPR-Cas系统对细菌自身生物膜的形成、耐药性、毒力等生理功能都有调控作用,这对于研究人员进行相关研究有着重要意义。本文以细菌CRISPR-Cas系统及其发挥免疫防御作用的相关研究为基础展开论述,重点阐述该系统对细菌生理功能的调控作用,并对其应用前景进行了展望,以期为进一步研究细菌耐药性和致病性提供新思路。 相似文献
2.
A dual role for proline iminopeptidase in the regulation of bacterial motility and host immunity 下载免费PDF全文
Yao Wu Jia Long Liyang Song Rongxiang Fang Yantao Jia 《Molecular Plant Pathology》2018,19(8):2011-2024
During plant–pathogen interactions, pathogenic bacteria have evolved multiple strategies to cope with the sophisticated defence systems of host plants. Proline iminopeptidase (PIP) is essential to Xanthomonas campestris pv. campestris (Xcc) virulence, and is conserved in many plant‐associated bacteria, but its pathogenic mechanism remains unclear. In this study, we found that disruption of pip in Xcc enhanced its flagella‐mediated bacterial motility by decreasing intracellular bis‐(3′,5′)‐cyclic dimeric guanosine monophosphate (c‐di‐GMP) levels, whereas overexpression of pip in Xcc restricted its bacterial motility by elevating c‐di‐GMP levels. We also found that PIP is a type III secretion system‐dependent effector capable of eliciting a hypersensitive response in non‐host, but not host plants. When we transformed pip into the host plant Arabidopsis, higher bacterial titres were observed in pip‐overexpressing plants relative to wild‐type plants after Xcc inoculation. The repressive function of PIP on plant immunity was dependent on PIP's enzymatic activity and acted through interference with the salicylic acid (SA) biosynthetic and regulatory genes. Thus, PIP simultaneously regulates two distinct regulatory networks during plant–microbe interactions, i.e. it affects intracellular c‐di‐GMP levels to coordinate bacterial behaviour, such as motility, and functions as a type III effector translocated into plant cells to suppress plant immunity. Both processes provide bacteria with the regulatory potential to rapidly adapt to complex environments, to utilize limited resources for growth and survival in a cost‐efficient manner and to improve the chances of bacterial survival by helping pathogens to inhabit the internal tissues of host plants. 相似文献
3.
4.
5.
DNA错配修复系统组成和功能的研究进展 总被引:1,自引:0,他引:1
DNA错配修复(Mismatch repair,MMR)系统广泛的存在于从原核到真核的生物体中,是进化上保守的生化通路.MMR系统由一系列特异性修复DNA碱基错配的酶分子(错配修复基因产物)组成.细胞由于此系统的存在使DNA复制保持忠实性,从而保持遗传物质的完整性和稳定性,避免遗传物质发生突变.MMR系统基因的失活会导致自发突变率的明显增加,从而导致微卫星不稳定(MSI),可能引发某些肿瘤发生.近年来,MMR系统的研究越来越受到学者的重视,对MMR作用机制及组成该系统的几种酶蛋白结构与功能方面的研究不断深入,加深了对MMR系统的理解.这些为MMR系统相关的应用研究,尤其是为肿瘤发生奠定了理论的基础.本文重点讨论了错配修复系统的蛋白组成、各蛋白的功能及它们如何相互协调发挥作用的最新研究进展. 相似文献
6.
All organisms possess DNA repair pathways that are used to maintain the integrity of their genetic material. Although many DNA repair pathways are well understood, new pathways continue to be discovered. Here, we report an antibiotic specific DNA repair pathway in Bacillus subtilis that is composed of a previously uncharacterized helicase (mrfA) and exonuclease (mrfB). Deletion of mrfA and mrfB results in sensitivity to the DNA damaging agent mitomycin C, but not to any other type of DNA damage tested. We show that MrfAB function independent of canonical nucleotide excision repair, forming a novel excision repair pathway. We demonstrate that MrfB is a metal‐dependent exonuclease and that the N‐terminus of MrfB is required for interaction with MrfA. We determined that MrfAB failed to unhook interstrand cross‐links in vivo, suggesting that MrfAB are specific to the monoadduct or the intrastrand cross‐link. A phylogenetic analysis uncovered MrfAB homologs in diverse bacterial phyla, and cross‐complementation indicates that MrfAB function is conserved in closely related species. B. subtilis is a soil dwelling organism and mitomycin C is a natural antibiotic produced by the soil bacterium Streptomyces lavendulae. The specificity of MrfAB suggests that these proteins are an adaptation to environments with mitomycin producing bacteria. 相似文献
7.
The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse group of proteins including Smi1/Knr4, PGs2, FBXO3, SKIP16, Syd, herpesviral US22, IRS1 and TRS1, and their bacterial homologs. Using contextual analysis we present evidence that the bacterial members of this superfamily are potential immunity proteins for a variety of toxin systems that also include the recently characterized contact-dependent inhibition (CDI) systems of proteobacteria. By analyzing the toxin proteins encoded in the neighborhood of the SUKH superfamily we predict that they possess domains belonging to diverse nuclease and nucleic acid deaminase families. These include at least eight distinct types of DNases belonging to HNH/EndoVII- and restriction endonuclease-fold, and RNases of the EndoU-like and colicin E3-like cytotoxic RNases-folds. The N-terminal domains of these toxins indicate that they are extruded by several distinct secretory mechanisms such as the two-partner system (shared with the CDI systems) in proteobacteria, ESAT-6/WXG-like ATP-dependent secretory systems in Gram-positive bacteria and the conventional Sec-dependent system in several bacterial lineages. The hedgehog-intein domain might also release a subset of toxic nuclease domains through auto-proteolytic action. Unlike classical colicin-like nuclease toxins, the overwhelming majority of toxin systems with the SUKH superfamily is chromosomally encoded and appears to have diversified through a recombination process combining different C-terminal nuclease domains to N-terminal secretion-related domains. Across the bacterial superkingdom these systems might participate in discriminating `self' or kin from `non-self' or non-kin strains. Using structural analysis we demonstrate that the SUKH domain possesses a versatile scaffold that can be used to bind a wide range of protein partners. In eukaryotes it appears to have been recruited as an adaptor to regulate modification of proteins by ubiquitination or polyglutamylation. Similarly, another widespread immunity protein from these toxin systems, namely the suppressor of fused (SuFu) superfamily has been recruited for comparable roles in eukaryotes. In animal DNA viruses, such as herpesviruses, poxviruses, iridoviruses and adenoviruses, the ability of the SUKH domain to bind diverse targets has been deployed to counter diverse anti-viral responses by interacting with specific host proteins. 相似文献
8.
9.
Plant stomata function in innate immunity against bacterial invasion 总被引:48,自引:0,他引:48
Microbial entry into host tissue is a critical first step in causing infection in animals and plants. In plants, it has been assumed that microscopic surface openings, such as stomata, serve as passive ports of bacterial entry during infection. Surprisingly, we found that stomatal closure is part of a plant innate immune response to restrict bacterial invasion. Stomatal guard cells of Arabidopsis perceive bacterial surface molecules, which requires the FLS2 receptor, production of nitric oxide, and the guard-cell-specific OST1 kinase. To circumvent this innate immune response, plant pathogenic bacteria have evolved specific virulence factors to effectively cause stomatal reopening as an important pathogenesis strategy. We provide evidence that supports a model in which stomata, as part of an integral innate immune system, act as a barrier against bacterial infection. 相似文献
10.
11.
DNA lesion recognition by the bacterial repair enzyme MutM 总被引:4,自引:0,他引:4
MutM is a bacterial DNA glycosylase that removes the mutagenic lesion 8-oxoguanine (oxoG) from duplex DNA. The means of oxoG recognition by MutM (also known as Fpg) is of fundamental interest, in light of the vast excess of normal guanine bases present in genomic DNA. The crystal structure of a recognition-competent but catalytically inactive version of MutM in complex with oxoG-containing DNA reveals the structural basis for recognition. MutM binds the oxoG nucleoside in the syn glycosidic configuration and distinguishes oxoG from guanine by reading out the protonation state of the N7 atom. The segment of MutM principally responsible for oxoG recognition is a flexible loop, suggesting that conformational mobility influences lesion recognition and catalysis. Furthermore, the structure of MutM in complex with DNA containing an alternative substrate, dihydrouracil, demonstrates how MutM is able to recognize lesions other than oxoG. 相似文献
12.
13.
Summary The removal of pyrimidine dimers from deoxyribonucleic acid of ultraviolet irradiated cultures of Neisseria gonorrhoeae can not be readily ascertained by using radioactively labeled thymidine percursors. However, by adapting the alkaline agarose gel technique of Achey et al. (Photochem Photobiol 29, 305–310, 1979), it was possible to demonstrate that this human pathogen does possess an active excision repair system that functions on pyrimidine dimers.This work was performed as partial fulfillment for a Doctoral Thesis by L.A. Campbell. 相似文献
14.
Yi-Chen Chen Chia-Lung Li Yu-Yuan Hsiao Yulander Duh Hanna S. Yuan 《Nucleic acids research》2014,42(16):10776-10785
TatD is an evolutionarily conserved protein with thousands of homologues in all kingdoms of life. It has been suggested that TatD participates in DNA fragmentation during apoptosis in eukaryotic cells. However, the cellular functions and biochemical properties of TatD in bacterial and non-apoptotic eukaryotic cells remain elusive. Here we show that Escherichia coli TatD is a Mg2+-dependent 3′–5′ exonuclease that prefers to digest single-stranded DNA and RNA. TatD-knockout cells are less resistant to the DNA damaging agent hydrogen peroxide, and TatD can remove damaged deaminated nucleotides from a DNA chain, suggesting that it may play a role in the H2O2-induced DNA repair. The crystal structure of the apo-form TatD and TatD bound to a single-stranded three-nucleotide DNA was determined by X-ray diffraction methods at a resolution of 2.0 and 2.9 Å, respectively. TatD has a TIM-barrel fold and the single-stranded DNA is bound at the loop region on the top of the barrel. Mutational studies further identify important conserved metal ion-binding and catalytic residues in the TatD active site for DNA hydrolysis. We thus conclude that TatD is a new class of TIM-barrel 3′–5′ exonuclease that not only degrades chromosomal DNA during apoptosis but also processes single-stranded DNA during DNA repair. 相似文献
15.
Cha Kyung Youn Jung-Hee Lee Gurusamy Hariharasudhan Hong Beum Kim Jeeho Kim Sumi Lee Sung-Chul Lim Sang-Pil Yoon Sang-Gon Park In-Youb Chang Ho Jin You 《Cell death & disease》2022,13(4)
The Hsp70-binding protein 1 (HspBP1) belongs to a family of co-chaperones that regulate Hsp70 activity and whose biological significance is not well understood. In the present study, we show that when HspBP1 is either knocked down or overexpressed in BRCA1-proficient breast cancer cells, there were profound changes in tumorigenesis, including anchorage-independent cell growth in vitro and in tumor formation in xenograft models. However, HspBP1 did not affect tumorigenic properties in BRCA1-deficient breast cancer cells. The mechanisms underlying HspBP1-induced tumor suppression were found to include interactions with BRCA1 and promotion of BRCA1-mediated homologous recombination DNA repair, suggesting that HspBP1 contributes to the suppression of breast cancer by regulating BRCA1 function and thereby maintaining genomic stability. Interestingly, independent of BRCA1 status, HspBP1 facilitates cell survival in response to ionizing radiation (IR) by interfering with the association of Hsp70 and apoptotic protease-activating factor-1. These findings suggest that decreased HspBP1 expression, a common occurrence in high-grade and metastatic breast cancers, leads to genomic instability and enables resistance to IR treatment.Subject terms: Homologous recombination, Breast cancer 相似文献
16.
E L Ivanov 《Genetika》1989,25(2):197-206
Recent data on cloning and sequencing of RAD genes controlling DNA repair in yeast are reviewed. The structure of regulatory regions and molecular features of the RAD genes' protein products have been considered. Special attention was paid to the regulation of expression of RAD genes and their functions, differing from those for DNA repair. Examples of homology between yeast RAD genes and their counterparts in bacteria and higher eukaryotes are discussed. 相似文献
17.
Bo Zhang Jinying Lin Vanja Per
ulija Yu Li Qiuhua Lu Jing Chen Songying Ouyang 《Nucleic acids research》2022,50(20):11820
Cas12c is the recently characterized dual RNA-guided DNase effector of type V-C CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein) systems. Due to minimal requirements for a protospacer adjacent motif (PAM), Cas12c is an attractive candidate for genome editing. Here we report the crystal structure of Cas12c1 in complex with single guide RNA (sgRNA) and target double-stranded DNA (dsDNA) containing the 5′-TG-3′ PAM. Supported by biochemical and mutation assays, this study reveals distinct structural features of Cas12c1 and the associated sgRNA, as well as the molecular basis for PAM recognition, target dsDNA unwinding, heteroduplex formation and recognition, and cleavage of non-target and target DNA strands. Cas12c1 recognizes the PAM through a mechanism that is interdependent on sequence identity and Cas12c1-induced conformational distortion of the PAM region. Another special feature of Cas12c1 is the cleavage of both non-target and target DNA strands at a single, uniform site with indistinguishable cleavage capacity and order. Location of the sgRNA seed region and minimal length of target DNA required for triggering Cas12c1 DNase activity were also determined. Our findings provide valuable information for developing the CRISPR-Cas12c1 system into an efficient, high-fidelity genome editing tool. 相似文献
18.
Gangliosides play important roles in the normal physiological operations of the nervous system, in particular that of the brain. Changes in ganglioside composition occur in the mammalian brain not only during development, but also in aging and in several neuropathological situations. Gangliosides may modulate the ability of the brain to modify its response to cues or signals from the microenvironment. For example, cultured neurons are known to respond to exogenous ganglioside with changes characteristic of cell differentiation. Gangliosides can amplify the responses of neurons to extrinsic protein factors (neuronotrophic factors) that are normal constituents of the neuron's environment. The systemic administration of monosialoganglioside also potentiates trophic actions in vivo and improves neural responses following various types of injury to the adult mammalian central nervous system. The possible molecular mechanism(s) underlying the ganglioside effects may reflect an action in modulating ligand-receptor linked transfer of information across the plasma membrane of the cell. 相似文献
19.