首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of oral caffeine ingestion on intense intermittent exercise performance and muscle interstitial ion concentrations was examined. The study consists of two studies (S1 and S2). In S1, 12 subjects completed the Yo-Yo intermittent recovery level 2 (Yo-Yo IR2) test with prior caffeine (6 mg/kg body wt; CAF) or placebo (PLA) intake. In S2, 6 subjects performed one low-intensity (20 W) and three intense (50 W) 3-min (separated by 5 min) one-legged knee-extension exercise bouts with (CAF) and without (CON) prior caffeine supplementation for determination of muscle interstitial K(+) and Na(+) with microdialysis. In S1 Yo-Yo IR2 performance was 16% better (P < 0.05) in CAF compared with PLA. In CAF, plasma K(+) at the end of the Yo-Yo IR2 test was 5.2 ± 0.1 mmol/l with no difference between the trials. Plasma free fatty acids (FFA) were higher (P < 0.05) in CAF than PLA at rest and remained higher (P < 0.05) during exercise. Peak blood glucose (8.0 ± 0.6 vs. 6.2 ± 0.4 mmol/l) and plasma NH(3) (137.2 ± 10.8 vs. 113.4 ± 13.3 μmol/l) were also higher (P < 0.05) in CAF compared with PLA. In S2 interstitial K(+) was 5.5 ± 0.3, 5.7 ± 0.3, 5.8 ± 0.5, and 5.5 ± 0.3 mmol/l at the end of the 20-W and three 50-W periods, respectively, in CAF, which were lower (P < 0.001) than in CON (7.0 ± 0.6, 7.5 ± 0.7, 7.5 ± 0.4, and 7.0 ± 0.6 mmol/l, respectively). No differences in interstitial Na(+) were observed between CAF and CON. In conclusion, caffeine intake enhances fatigue resistance and reduces muscle interstitial K(+) during intense intermittent exercise.  相似文献   

2.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

3.
IL-6 induces lipolysis when administered to humans. Consequently, it has been hypothesized that IL-6 is released from skeletal muscle during exercise to act in a "hormonelike" manner and increase lipolysis from adipose tissue to supply the muscle with substrate. In the present study, we hypothesized that suppressing lipolysis, and subsequent free fatty acid (FFA) availability, would result in a compensatory elevation in IL-6 at rest and during exercise. First, we had five healthy men ingest nicotinic acid (NA) at 30-min intervals for 120 min at rest [10 mg/kg body mass (initial dose), 5 mg/kg body mass (subsequent doses)]. Plasma was collected and analyzed for FFA and IL-6. After 120 min, plasma FFA concentration was attenuated (0 min: 0.26 +/- 0.05 mmol/l; 120 min: 0.09 +/- 0.02 mmol/l; P < 0.01), whereas plasma IL-6 was concomitantly increased approximately eightfold (0 min: 0.75 +/- 0.18 pg/ml; 120 min: 6.05 +/- 0.89 pg/ml; P < 0.001). To assess the effect of lipolytic suppression on the exercise-induced IL-6 response, seven active, but not specifically trained, men performed two experimental exercise trials with (NA) or without [control (Con)] NA ingestion 60 min before (10 mg/kg body mass) and throughout (5 mg/kg body mass every 30 min) exercise. Blood samples were obtained before ingestion, 60 min after ingestion, and throughout 180 min of cycling exercise at 62 +/- 5% of maximal oxygen consumption. IL-6 gene expression, in muscle and adipose tissue sampled at 0, 90, and 180 min, was determined by using semiquantitative real-time PCR. IL-6 mRNA increased in Con (rest vs. 180 min; P < 0.01) approximately 13-fold in muscle and approximately 42-fold in fat with exercise. NA increased (rest vs. 180 min; P < 0.01) IL-6 mRNA 34-fold in muscle, but the treatment effect was not statistically significant (Con vs. NA, P = 0.1), and 235-fold in fat (Con vs. NA, P < 0.01). Consistent with the study at rest, NA completely suppressed plasma FFA (180 min: Con, 1.42 +/- 0.07 mmol/l; NA, 0.10 +/- 0.01 mmol/l; P < 0.001) and increased plasma IL-6 (180 min: Con, 9.81 +/- 0.98 pg/ml; NA, 19.23 +/- 2.50 pg/ml; P < 0.05) during exercise. In conclusion, these data demonstrate that circulating IL-6 is markedly elevated at rest and during prolonged moderate-intensity exercise when lipolysis is suppressed.  相似文献   

4.
It is investigated if exercise-induced mRNA changes cause similar protein expression changes of Na(+)-K(+) pump isoforms (α(1), α(2), β(1), β(2)), FXYD1, and Na(+)/K(+) exchanger (NHE1) in rat skeletal muscle. Expression was evaluated (n = 8 per group) in soleus and extensor digutorum longus after 1 day, 3 days, and 3 wk (5 sessions/wk) of either sprint (4 × 3-min sprint + 1-min rest) or endurance (20 min) running. Two hours after exercise on day 1, no change in protein expression was apparent in either training group or muscle, whereas sprint exercise increased the mRNA of soleus α(2) (4.9 ± 0.8-fold; P < 0.05), β(2) (13.2 ± 4.4-fold; P < 0.001), and NHE1 (12.0 ± 3.1-fold; P < 0.01). Two hours after sprint exercise, protein expression normalized to control samples was higher on day 3 than day 1 for soleus α(1) (41 ± 18% increase vs. 15 ± 8% reduction; P < 0.05), α(2) (64 ± 35% increase vs. 37 ± 12% reduction; P < 0.05), β(1) (17 ± 21% increase vs. 14 ± 29% reduction; P < 0.05), and FXYD1 (35 ± 16% increase vs. 13 ± 10% reduction; P < 0.05). In contrast, on day 3, soleus α(1) (0.1 ± 0.1-fold; P < 0.001), α(2) (0.2 ± 0.1-fold; P < 0.001), β(1) (0.4 ± 0.1-fold; P < 0.05), and β(2)-mRNA (2.9 ± 1.7-fold; P < 0.001) expression was lower than after exercise on day 1. After 3 wk of training, no change in protein expression relative to control existed. In conclusion, increased expression of Na(+)-K(+) pump subunits, FXYD1 and NHE1 after 3 days exercise training does not appear to be an effect of increased constitutive mRNA levels. Importantly, sprint exercise can reduce mRNA expression concomitant with increased protein expression.  相似文献   

5.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.  相似文献   

6.
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.  相似文献   

7.
The hypothesis investigated whether exercise performance over a broad range of intensities is determined by specific skeletal muscle characteristics. Seven subjects performed 8-10 exhaustive cycle trials at different workloads, ranging from 150 to 700 W (150 min to 20 s). No relationships between the performance times at high and low workloads were observed. A relationship (P < 0.05) was noticed between the percentage of fast-twitch x fibers and the exercise time at 579 ± 21 W (~30 s; r(2) = 0.88). Capillary-to-fiber-ratio (r(2): 0.58-0.85) was related (P < 0.05) to exercise time at work intensities ranging from 395 to 270 W (2.5-21 min). Capillary density was correlated (r(2) = 0.68; P < 0.05) with the net rate of plasma K(+) accumulation during an ~3-min bout and was estimated to explain 50-80% (P < 0.05) of the total variance observed in exercise performances lasting ~30 s to 3 min. The Na(+)-K(+) pump β(1)-subunit expression was found to account for 13-34% (P < 0.05) during exhaustive exercise of ~1-4 min. In conclusion, exercise performance at different intensities is related to specific physiological variables. A large distribution of fast-twitch x fibers may play a role during very intense efforts, i.e., ~30 s. Muscle capillaries and the Na(+)-K(+) pump β(1)-subunit seem to be important determinants for performance during exhaustive high-intensity exercises lasting between 30 s and 4 min.  相似文献   

8.
This study investigated the effect of reduced free fatty acid (FFA) availability on pyruvate dehydrogenase activation (PDHa) and carbohydrate metabolism during moderate aerobic exercise. Eight active male subjects cycled for 40 min at 55% Vo(2 peak) on two occasions. During one trial, subjects ingested 20 mg/kg body mass of the antilipolytic drug nicotinic acid (NA) during the hour before exercise to reduce FFA. Nothing was ingested in the control trial (CON). Blood and expired gas measurements were obtained throughout the trials, and muscle biopsy samples were obtained immediately before exercise and at 5, 20, and 40 min of exercise. Plasma FFA were lower in the NA trial (0.13 +/- 0.01 vs. 0.48 +/- 0.03 mM, P < 0.05), and the respiratory exchange ratio (RER) was increased with NA (0.93 +/- 0.01 vs. 0.89 +/- 0.01, P < 0.05), resulting in a 14.5 +/- 1.8% increase in carbohydrate oxidation compared with CON. PDHa increased rapidly in both trials at exercise onset but was approximately 15% higher (P < 0.05) throughout exercise in the NA trial (2.44 +/- 0.19 and 2.07 +/- 0.12 mmol x kg wet muscle(-1) x min(-1) for NA and CON at 40 min). Muscle glycogenolysis was 15.3 +/- 9.6% greater in the NA trial vs. the CON trial but did not reach statistical significance. Glucose 6-phosphate contents were elevated (P < 0.05) in the NA trial at 30 and 40 min of exercise, but pyruvate and lactate contents were unaffected. These data demonstrate that the reduction of exogenous FFA availability increased the activation of PDH and carbohydrate oxidation during moderate aerobic exercise in men. The increased activation of PDH was not explained by changes in muscle pyruvate or the ATP/ADP ratio but may be related to a decrease in the NADH/NAD(+) ratio or an epinephrine-induced increase in calcium concentration.  相似文献   

9.
We examined the effects of dynamic one-legged knee extension exercise on mean blood velocity (MBV) and muscle interstitial metabolite concentrations in healthy young subjects (n = 7). Femoral MBV (Doppler), mean arterial pressure (MAP) and muscle interstitial metabolite (adenosine, lactate, phosphate, K(+), pH, and H(+); by microdialysis) concentrations were measured during 5 min of exercise at 30 and 60% of maximal work capacity (W(max)). MAP increased (P < 0.05) to a similar extent during the two exercise bouts, whereas the increase in MBV was greater (P < 0.05) during exercise at 60% (77.00 +/- 6.77 cm/s) compared with 30% W(max) (43.71 +/- 3.71 cm/s). The increase in interstitial adenosine from rest to exercise was greater (P < 0.05) during the 60% (0.80 +/- 0.10 microM) compared with the 30% W(max) bout (0.57 +/- 0.10 microM). During exercise at 60% W(max), interstitial K(+) rose at a greater rate than during exercise at 30% W(max) (P < 0.05). However, pH increased (H(+) decreased) at similar rates for the two exercise intensities. During exercise, interstitial lactate and phosphate increased (P < 0.05) with no difference observed between the two intensities. After 5 min of recovery, MBV decreased to baseline levels after exercise at 30% W(max) (4.12 +/- 1.10 cm/s), whereas MBV remained above baseline levels after exercise at 60% W(max) (Delta19.46 +/- 2.61 cm/s; P < 0.05). MAP and interstitial adenosine, K(+), pH, and H(+) returned toward baseline levels. However, interstitial lactate and phosphate continued to increase during the recovery period. Thus an increase in exercise intensity resulted in concomitant changes in MBV and muscle interstitial adenosine and K(+), whereas similar changes were not observed for MAP or muscle interstitial pH, lactate, or phosphate. These data suggest that K(+) and/or adenosine may play an active role in the regulation of skeletal muscle blood flow during exercise.  相似文献   

10.
Barth syndrome (BTHS) is a mitochondrial myopathy characterized by reports of exercise intolerance. We sought to determine if 1) BTHS leads to abnormalities of skeletal muscle O(2) extraction/utilization and 2) exercise intolerance in BTHS is related to impaired O(2) extraction/utilization, impaired cardiac function, or both. Participants with BTHS (age: 17 ± 5 yr, n = 15) and control participants (age: 13 ± 4 yr, n = 9) underwent graded exercise testing on a cycle ergometer with continuous ECG and metabolic measurements. Echocardiography was performed at rest and at peak exercise. Near-infrared spectroscopy of the vastus lateralis muscle was continuously recorded for measurements of skeletal muscle O(2) extraction. Adjusting for age, peak O(2) consumption (16.5 ± 4.0 vs. 39.5 ± 12.3 ml·kg(-1)·min(-1), P < 0.001) and peak work rate (58 ± 19 vs. 166 ± 60 W, P < 0.001) were significantly lower in BTHS than control participants. The percent increase from rest to peak exercise in ejection fraction (BTHS: 3 ± 10 vs. control: 19 ± 4%, P < 0.01) was blunted in BTHS compared with control participants. The muscle tissue O(2) saturation change from rest to peak exercise was paradoxically opposite (BTHS: 8 ± 16 vs. control: -5 ± 9, P < 0.01), and the deoxyhemoglobin change was blunted (BTHS: 0 ± 12 vs. control: 10 ± 8, P < 0.09) in BTHS compared with control participants, indicating impaired skeletal muscle extraction in BTHS. In conclusion, severe exercise intolerance in BTHS is due to both cardiac and skeletal muscle impairments that are consistent with cardiac and skeletal mitochondrial myopathy. These findings provide further insight to the pathophysiology of BTHS.  相似文献   

11.
This study examined the effects of elevated free fatty acid (FFA) provision on the regulation of pyruvate dehydrogenase (PDH) activity and malonyl-CoA (M-CoA) content in human skeletal muscle during moderate-intensity exercise. Seven men rested for 30 min and cycled for 10 min at 40% and 10 min at 65% of maximal O(2) uptake while being infused with either Intralipid and heparin (Int) or saline (control). Muscle biopsies were taken at 0, 1 (rest-to-exercise transition), 10, and 20 min. Exercise plasma FFA were elevated (0.99 +/- 0.11 vs. 0.33 +/- 0.03 mM), and the respiratory exchange ratio was reduced during Int (0.87 +/- 0.02) vs. control (0.91 +/- 0.01). PDH activation was lower during Int at 1 min (1.33 +/- 0.19 vs. 2.07 +/- 0.14 mmol. min(-1). kg(-1) wet muscle) and throughout exercise. Muscle pyruvate was reduced during Int at rest [0.17 +/- 0.03 vs. 0.25 +/- 0.03 mmol/kg dry muscle (dm)] but increased above control during exercise. NADH was higher during Int vs. control at rest and 1 min of exercise (0.122 +/- 0.016 vs. 0.102 +/- 0.005 and 0.182 +/- 0.016 vs. 0.150 +/- 0.016 mmol/kg dm), but not at 10 and 20 min. M-CoA was lower during Int vs. control at rest and 20 min of exercise (1.12 +/- 0.22 vs. 1.43 +/- 0.17 and 1.33 +/- 0.16 vs. 1.84 +/- 0.17 micromol/kg dm). The reduced PDH activation with elevated FFA during the rest-to-exercise transition was related to higher mitochondrial NADH at rest and 1 min of exercise and lower muscle pyruvate at rest. The decreased M-CoA may have increased fat oxidation during exercise with elevated FFA by reducing carnitine palmitoyltransferase I inhibition and increasing mitochondrial FFA transport.  相似文献   

12.
The relationship between two abnormalities of exercise physiology in chronic heart failure patients was investigated: chronotropic incompetence and decrease in core temperature. While at rest, 13 heart failure patients had an average sinus heart rate that was significantly higher than seven normals (92 +/- 13 vs. 82 +/- 10 min-1, P less than 0.05). However, during exercise, the trend of increase in sinus heart rate as a function of work load and O2 uptake was significantly greater in normals compared with heart failure (P less than 0.05), and the absolute increase in heart rate at 50 W of cycle ergometry was larger in normals compared with heart failure (38 +/- 17 vs. 22 +/- 13 min-1, P less than 0.05). Differences in core temperature regulation were also observed. In the normals, core temperature increased from 37.13 +/- 0.33 degrees C at rest to 37.37 +/- 0.31 degrees C at 50 W of exercise (P less than 0.01). In the heart failure patients, core temperature decreased from 36.99 +/- 0.33 degrees C at rest to 36.66 +/- 0.39 degrees C at 50 W of exercise (P less than 0.01). As expected, significant differences in hemodynamic and gas exchange variables were observed between the normals and the heart failure patients both at rest and during exercise. A multiple linear regression analysis was performed of heart rate changes as the dependent variable and thermoregulatory and hemodynamic changes as the independent variables to test for their influence on heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
AMP-activated protein kinase (AMPK) is emerging as a key signaling pathway that modulates cellular metabolic processes. In skeletal muscle, AMPK is activated during exercise. Increased myocardial substrate metabolism during exercise could be explained by AMPK activation. Although AMPK is known to be activated during myocardial ischemia, it remains uncertain whether AMPK is activated in response to the physiological increases in cardiac work associated with exercise. Therefore, we evaluated cardiac AMPK activity in rats at rest and after 10 min of treadmill running at moderate (15% grade, 16 m/min) or high (15% grade, 32 m/min) intensity. Total AMPK activity in the heart increased in proportion to exercise intensity (P < 0.05). AMPK activity associated with the alpha2-catalytic subunit increased 2.8 +/- 0.4-fold (P < 0.02 vs. rest) and 4.5 +/- 0.6-fold (P < 0.001 vs. rest) with moderate- and high-intensity exercise, respectively. AMPK activity associated with the alpha1-subunit increased to a lesser extent. Phosphorylation of the Thr172-regulatory site on AMPK alpha-catalytic subunits increased during exercise (P < 0.001). There was no increase in Akt phosphorylation during exercise. The changes in AMPK activity during exercise were associated with physiological AMPK effects (GLUT4 translocation to the sarcolemma and ACC phosphorylation). Thus cardiac AMPK activity increases progressively with exercise intensity, supporting the hypothesis that AMPK has a physiological role in the heart.  相似文献   

14.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on endurance capacity and metabolic responses during arm exercise were determined in 10 untrained males (20-26 yr). Subjects performed arm ergometer exercise (60% peak O2 consumption) to exhaustion after consumption of standard diets (55% carbohydrate, 15% protein, 30% fat; 35 kcal/kg) containing either 100 g of Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a random order, and each was consumed for a 7-day period. Biopsy of the triceps muscle was obtained immediately before and after exercise. Blood samples were drawn through radial artery and axillary vein catheters at rest, after 60 min of exercise, and at exercise termination. Arm endurance was 133 +/- 20 min after P and 160 +/- 22 min after DHAP (P less than 0.01). Triceps glycogen at rest was 88 +/- 8 (P) and 130 +/- 19 mmol/kg (DHAP) (P less than 0.05). Whole arm arteriovenous glucose difference (mmol/l) was greater (P less than 0.05) for DHAP than P at rest (0.60 +/- 0.12 vs. 0.05 +/- 0.09) and after 60 min of exercise (1.00 +/- 0.12 vs. 0.36 +/- 0.11), but it did not differ at exhaustion. Neither respiratory exchange ratio nor respiratory quotient differed between trials at rest, after 60 min of exercise, or at exhaustion. Plasma free fatty acid, glycerol, beta-hydroxybutyrate, catecholamines, and insulin were similar during rest and exercise for both diets. Feeding DHAP for 7 days increased arm muscle glucose extraction before and during exercise, thereby enhancing submaximal arm endurance capacity.  相似文献   

15.
We determined the effect of fat adaptation on metabolism and performance during 5 h of cycling in seven competitive athletes who consumed a standard carbohydrate (CHO) diet for 1 day and then either a high-CHO diet (11 g. kg(-1)x day(-1) CHO, 1 g x kg(-1) x day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.6 g x kg(-1) x day(-1) CHO, 4.6 g x kg(-1) x day(-1) fat; fat-adapt) for 6 days. On day 8, subjects consumed a high-CHO diet and rested. On day 9, subjects consumed a preexercise meal and then cycled for 4 h at 65% peak O(2) uptake, followed by a 1-h time trial (TT). Compared with baseline, 6 days of fat-adapt reduced respiratory exchange ratio (RER) with cycling at 65% peak O(2) uptake [0.78 +/- 0.01 (SE) vs. 0.85 +/- 0.02; P < 0.05]. However, RER was restored by 1 day of high-CHO diet, preexercise meal, and CHO ingestion (0.88 +/- 0.01; P < 0.05). RER was higher after HCHO than fat-adapt (0.85 +/- 0.01, 0.89 +/- 0.01, and 0.93 +/- 0.01 for days 2, 8, and 9, respectively; P < 0.05). Fat oxidation during the 4-h ride was greater (171 +/- 32 vs. 119 +/- 38 g; P < 0.05) and CHO oxidation lower (597 +/- 41 vs. 719 +/- 46 g; P < 0.05) after fat-adapt. Power output was 11% higher during the TT after fat-adapt than after HCHO (312 +/- 15 vs. 279 +/- 20 W; P = 0.11). In conclusion, compared with a high-CHO diet, fat oxidation during exercise increased after fat-adapt and remained elevated above baseline even after 1 day of a high-CHO diet and increased CHO availability. However, this study failed to detect a significant benefit of fat adaptation to performance of a 1-h TT undertaken after 4 h of cycling.  相似文献   

16.
Exercise blunts sympathetic alpha-adrenergic vasoconstriction (functional sympatholysis). We hypothesized that sympatholysis would be augmented during hypoxic exercise compared with exercise alone. Fourteen subjects were monitored with ECG and pulse oximetry. Brachial artery and antecubital vein catheters were placed in the nondominant (exercising) arm. Subjects breathed hypoxic gas to titrate arterial O2 saturation to 80% while remaining normocapnic via a rebreath system. Baseline and two 8-min bouts of rhythmic forearm exercise (10 and 20% of maximum) were performed during normoxia and hypoxia. Forearm blood flow, blood pressure, heart rate, minute ventilation, and end-tidal CO2 were measured at rest and during exercise. Vasoconstrictor responsiveness was determined by responses to intra-arterial tyramine during the final 3 min of rest and each exercise bout. Heart rate was higher during hypoxia (P < 0.01), whereas blood pressure was similar (P = 0.84). Hypoxic exercise potentiated minute ventilation compared with normoxic exercise (P < 0.01). Forearm blood flow was higher during hypoxia compared with normoxia at rest (85 +/- 9 vs. 66 +/- 7 ml/min), at 10% exercise (276 +/- 33 vs. 217 +/- 27 ml/min), and at 20% exercise (464 +/- 32 vs. 386 +/- 28 ml/min; P < 0.01). Arterial epinephrine was higher during hypoxia (P < 0.01); however, venoarterial norepinephrine difference was similar between hypoxia and normoxia before (P = 0.47) and during tyramine administration (P = 0.14). Vasoconstriction to tyramine (%decrease from pretyramine values) was blunted in a dose-dependent manner with increasing exercise intensity (P < 0.01). Interestingly, vasoconstrictor responsiveness tended to be greater (P = 0.06) at rest (-37 +/- 6% vs. -33 +/- 6%), at 10% exercise (-27 +/- 5 vs. -22 +/- 4%), and at 20% exercise (-22 +/- 5 vs. -14 +/- 4%) between hypoxia and normoxia, respectively. Thus sympatholysis is not augmented by moderate hypoxia nor does it contribute to the increased blood flow during hypoxic exercise.  相似文献   

17.
目的: 观察健康志愿者不同功率递增速率完成症状限制性极限心肺运动试验(CPET)对CPET峰值运动相关核心指标的影响,及运动中呼吸交换率(RER)的变化。以探讨不同功率递增速率对CPET峰值运动相关指标的影响。方法: 选择12名健康志愿者在一周内不同工作天随机完成中等适度程度(30 W/min)及比较低(10 W/min)和比较高(60 W/min)3种不同功率递增速率CPET。按标准方法比较CPET数据主要峰值运动核心指标:峰值运动时的摄氧量、二氧化碳排出量、负荷功率、呼吸频率、潮气量、分钟通气量、心率、血压和氧脉搏,运动持续时间和CPET各时段的RER。对三组不同功率递增速率下各个指标的差异进行组间两两比较。结果: 与中等适度功率递增速率组比较,比较低和比较高功率递增速率组的峰值功率分别显著地降低和升高((162.04±41.59)W/min vs (132.92±34.55) W/min vs (197.42±46.14) W/min, P<0.01);运动时间显著延长和缩短((5.69±1.33) min vs (13.49±3.43) min vs (3.56±0.76) min,P<0.01);峰值RER(1.27±0.07 vs 1.18±0.06 vs 1.33±0.08,P<0.01~P<0.05)与恢复期RER最大值(1.72±0.16 vs 1.61±0.11 vs 1.81±0.14,P<0.01~P<0.05)均显著降低和升高。结论: 不同功率递增速率CPET显著改变峰值运动时的功率、运动持续时间、峰值RER和恢复期最大RER。CPET规范化操作要选择个体化适合受试者的中等适度功率递增速率,而且也不能以某一固定的RER值作为保证安全、受试者达到极限运动和提前终止运动的依据。  相似文献   

18.
Cardiopulmonary exercise testing for peak oxygen uptake (Vo(2peak)) can evaluate prognosis in chronic heart failure (CHF) patients, with the peak respiratory exchange ratio (RER(peak)) commonly used to confirm maximal effort and maximal oxygen uptake (Vo(2max)). We determined the precision of RER(peak) in confirming Vo(2max), and whether a novel ramp-incremental (RI) step-exercise (SE) (RISE) test could better determine Vo(2max) in CHF. Male CHF patients (n = 24; NYHA class I-III) performed a symptom-limited RISE-95 cycle ergometer test in the format: RI (4-18 W/min; ~10 min); 5 min recovery (10 W); SE (95% peak RI work rate). Patients (n = 18) then performed RISE-95 tests using slow (3-8 W/min; ~15 min) and fast (10-30 W/min; ~6 min) ramp rates. Pulmonary gas exchange was measured breath-by-breath. Vo(2peak) was compared within patients by unpaired t-test of the highest 12 breaths during RI and SE phases to confirm Vo(2max) and its 95% confidence limits (CI(95)). RER(peak) was significantly influenced by ramp rate (fast, medium, slow: 1.21 ± 0.1 vs. 1.15 ± 0.1 vs. 1.09 ± 0.1; P = 0.001), unlike Vo(2peak) (mean n = 18; 14.4 ± 2.6 ml·kg(-1)·min(-1); P = 0.476). Group Vo(2peak) was similar between RI and SE (n = 24; 14.5 ± 3.0 vs. 14.7 ± 3.1 ml·kg(-1)·min(-1); P = 0.407); however, within-subject comparisons confirmed Vo(2max) in only 14 of 24 patients (CI(95) for Vo(2max) estimation averaged 1.4 ± 0.8 ml·kg(-1)·min(-1)). The RER(peak) in CHF was significantly influenced by ramp rate, suggesting its use to determine maximal effort and Vo(2max) be abandoned. In contrast, the RISE-95 test had high precision for Vo(2max) confirmation with patient-specific CI(95) (without secondary criteria), and showed that Vo(2max) is commonly underestimated in CHF. The RISE-95 test was well tolerated by CHF patients, supporting its use for Vo(2max) confirmation.  相似文献   

19.
Numerous studies from our and other laboratories have shown that women have a lower respiratory exchange ratio (RER) during exercise than equally trained men, indicating a greater reliance on fat oxidation. Differences in estrogen concentration between men and women likely play a role in this sex difference. Differing estrogen and progesterone concentrations during the follicular (FP) and luteal (LP) phases of the female menstrual cycle suggest that fuel use may also vary between phases. The purpose of the current study was to determine the effect of menstrual cycle phase and sex upon glucose turnover and muscle glycogen utilization during endurance exercise. Healthy, recreationally active young women (n = 13) and men (n = 11) underwent a primed constant infusion of [6,6-2H]glucose with muscle biopsies taken before and after a 90-min cycling bout at 65% peak O2 consumption. LP women had lower glucose rate of appearance (Ra, P = 0.03), rate of disappearance (Rd, P = 0.03), and metabolic clearance rate (MCR, P = 0.04) at 90 min of exercise and lower proglycogen (P = 0.04), macroglycogen (P = 0.04), and total glycogen (P = 0.02) utilization during exercise compared with FP women. Men had a higher RER (P = 0.02), glucose Ra (P = 0.03), Rd (P = 0.03), and MCR (P = 0.01) during exercise compared with FP women, and men had a higher RER at 75 and 90 min of exercise (P = 0.04), glucose Ra (P = 0.01), Rd (P = 0.01), and MCR (P = 0.001) and a greater PG utilization (P = 0.05) compared with LP women. We conclude that sex, and to a lesser extent menstrual cycle, influence glucose turnover and glycogen utilization during moderate-intensity endurance exercise.  相似文献   

20.
This study investigates the impact of protein coingestion with carbohydrate on muscle protein synthesis during endurance type exercise. Twelve healthy male cyclists were studied during 2 h of fasted rest followed by 2 h of continuous cycling at 55% W(max). During exercise, subjects received either 1.0 g·kg(-1)·h(-1) carbohydrate (CHO) or 0.8 g·kg(-1)·h(-1) carbohydrate with 0.2 g·kg(-1)·h(-1) protein hydrolysate (CHO+PRO). Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body protein turnover and muscle protein synthesis rates at rest and during exercise conditions. Protein coingestion stimulated whole body protein synthesis and oxidation rates during exercise by 22 ± 3 and 70 ± 17%, respectively (P < 0.01). Whole body protein breakdown rates did not differ between experiments. As a consequence, whole body net protein balance was slightly negative in CHO and positive in the CHO+PRO treatment (-4.9 ± 0.3 vs. 8.0 ± 0.3 μmol Phe·kg(-1)·h(-1), respectively, P < 0.01). Mixed muscle protein fractional synthetic rates (FSR) were higher during exercise compared with resting conditions (0.058 ± 0.006 vs. 0.035 ± 0.006%/h in CHO and 0.070 ± 0.011 vs. 0.038 ± 0.005%/h in the CHO+PRO treatment, respectively, P < 0.05). FSR during exercise did not differ between experiments (P = 0.46). We conclude that muscle protein synthesis is stimulated during continuous endurance type exercise activities when carbohydrate with or without protein is ingested. Protein coingestion does not further increase muscle protein synthesis rates during continuous endurance type exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号