首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.  相似文献   

2.
The Escherichia coli rluD gene encodes a pseudouridine synthase responsible for the pseudouridine (Ψ) modifications at positions 1911, 1915, and 1917 in helix 69 of 23S rRNA. It has been reported that deletion of rluD in K-12 strains of E. coli is associated with extremely slow growth, increased readthrough of stop codons, and defects in 50S ribosomal subunit assembly and 30S-50S subunit association. Suppressor mutations in the prfB and prfC genes encoding release factor 2 (RF2) and RF3 that restore the wild type-growth rate and also correct the ribosomal defects have now been isolated. These suppressors link helix 69 Ψ residues with the termination phase of protein synthesis. However, further genetic analysis reported here also reveals that the slow growth and other defects associated with inactivation of rluD in E. coli K-12 strains are due to a defective RF2 protein, with a threonine at position 246, which is present in all K-12 strains. This is in contrast to the more typical alanine found at this position in most bacterial RF2s, including those of other E. coli strains. Inactivation of rluD in E. coli strains containing the prfB allele from E. coli B or in Salmonella enterica, both carrying an RF2 with Ala246, has negligible effects on growth, termination, or ribosome function. The results indicate that, in contrast to those in wild bacteria, termination functions in E. coli K-12 strains carrying a partially defective RF2 protein are especially susceptible to perturbation of ribosome-RF interactions, such as that caused by loss of h69 Ψ modifications.  相似文献   

3.
The Mycobacterium smegmatis rpsL and rpsG genes, encoding the ribosomal proteins S12 and S7, were cloned, and their DNA sequence was determined. The third nucleotide of the S12 termination codon overlapped the first nucleotide of the S7 translation initiation codon. A collection of 28 spontaneous streptomycin-resistant mutants of M. smegmatis were isolated. All had single-base-pair substitutions in the rpsL gene which were changed to a streptomycin-sensitive phenotype by complementation with a low-copy-number plasmid carrying the wild-type M. smegmatis rpsL gene. A total of eight different mutations were found in two specific regions of the rpsL gene. Fifty-seven percent (16 of 28) altered the Lys codon at position 43. Forty-six percent of the mutations (13 of 28) were due to a transition changing an AAG Lys codon to an AGG Arg codon, with eight changes at codon 43 and five at codon 88.  相似文献   

4.
A post-translational modification affecting the translation termination rate was identified in the universally conserved GGQ sequence of release factor 2 (RF2) from Escherichia coli, which is thought to mimic the CCA end of the tRNA molecule. It was shown by mass spectrometry and Edman degradation that glutamine in position 252 is N:(5)-methylated. Overexpression of RF2 yields protein lacking the methylation. RF2 from E.coli K12 is unique in having Thr246 near the GGQ motif, where all other sequenced bacterial class 1 RFs have alanine or serine. Sequencing the prfB gene from E.coli B and MRE600 strains showed that residue 246 is coded as alanine, in contrast to K12 RF2. Thr246 decreases RF2-dependent termination efficiency compared with Ala246, especially for short peptidyl-tRNAs. Methylation of Gln252 increases the termination efficiency of RF2, irrespective of the identity of the amino acid in position 246. We propose that the previously observed lethal effect of overproducing E.coli K12 RF2 arises through accumulating the defects due to lack of Gln252 methylation and Thr246 in place of alanine.  相似文献   

5.
U Johanson  D Hughes 《Gene》1992,120(1):93-98
The nucleotide (nt) sequences of the str operon in Escherichia coli K-12 and Salmonella typhimurium LT2 were completed and compared at the nt and amino acid (aa) level. The order of conservation at the nt and aa level is rpsL greater than tufA greater than rpsG greater than f usA. A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium. The very low (0.18) codon adaptation index of this part of the E. coli K-12-encoding gene and the unusual stop codon (UGA) suggest that this is a relatively recent extension. A trend towards a higher G+C content in fusA (gene encoding elongation factor (EF)-G) and tufA (gene encoding EF-Tu) in S. typhimurium is noted. In fusA, nt substitutions at all three positions in a codon occur at a much higher frequency than expected from the number of nt substitutions in the gene, assuming they are random and independent events. An analysis of substitutions in this and other genes suggests that the triple substitutions in fusA, and some other genes, are the result of the sequential accumulation of individual mutations, probably driven by selection pressure for particular codons or aa.  相似文献   

6.
7.
T Ohama  F Yamao  A Muto    S Osawa 《Journal of bacteriology》1987,169(10):4770-4777
The DNA sequence of the Micrococcus luteus str operon, which includes genes for ribosomal proteins S12 (str or rpsL) and S7 (rpsG) and elongation factors (EF) G (fus) and Tu (tuf), has been determined and compared with the corresponding sequence of Escherichia coli to estimate the effect of high genomic G + C content (74%) of M. luteus on the codon usage pattern. The gene organization in this operon and the deduced amino acid sequence of each corresponding protein are well conserved between the two species. The mean G + C content of the M. luteus str operon is 67%, which is much higher than that of E. coli (51%). The codon usage pattern of M. luteus is very different from that of E. coli and extremely biased to the use of G and C in silent positions. About 95% (1,309 of 1,382) of codons have G or C at the third position. Codon GUG is used for initiation of S12, EF-G, and EF-Tu, and AUG is used only in S7, whereas GUG initiates only one of the EF-Tu's in E. coli. UGA is the predominant termination codon in M. luteus, in contrast to UAA in E. coli.  相似文献   

8.
9.
The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances alpha-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing alpha-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in alpha-amylase production seen in the affected strain.  相似文献   

10.
Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.  相似文献   

11.
Mutations in genes of omnipotent nonsense suppressors SUP35 and SUP45 in yeast Saccharomyces cerevisiae encoding translation termination factors eRF3 and eRF1, respectively, and prionization of the eRF3 protein may lead to the suppression of some frameshift mutations (CPC mutations). Partial inactivation of the translation termination factor eRF3 was studied in strains with unstable genetically modified prions and also in transgenic yeast S. cerevisiae strains with the substitution of the indigenous SUP35 gene for its homolog from Pichia methanolica or for a recombinant S. cerevisiae SUP35 gene. It was shown that this partial inactivation leads not only to nonsense suppression, but also to suppression of the frameshift lys2-90 mutation. Possible reasons for the correlation between nonsense suppression and suppression of the CPC lys2-90 mutation and mechanisms responsible for the suppression of CPC mutations during inactivation of translation termination factors are discussed.  相似文献   

12.
Gartner, T. K. (University of California, Santa Barbara), and E. Orias. Effects of mutations to streptomycin resistance on the rate of translation of mutant genetic information. J. Bacteriol. 91:1021-1028. 1966.-The effects of mutations to streptomycin resistance of independent origin upon the translation of suppressible mutant information were studied in an isogenic series of strains of Escherichia coli. The group of suppressible mutants included 1 mutation in the z gene of the lac operon of E. coli (O(0) (2) allele), 12 mutations distributed among the two rII cistrons of T4, and 13 mutations distributed among at least five cistrons of phage T7. It was concluded that the mutations to streptomycin resistance cause a significant decrease in the rate of translation of the suppressible codons, and that this effect is limited to a few types of codons.  相似文献   

13.
The termination of protein synthesis in Escherichia coli requires two codon-specific factors termed RF1 and RF2. RF1 mediates UAA- and UAG-directed termination, while RF2 mediates UAA- and UGA-directed termination. The genes encoding these factors have been isolated and sequenced, and RF2 was found to be encoded in two separate reading frames. The map position of RF1 has been reported as 27 min on the E. coli chromosome, while the RF2 map position has not yet been identified. In this study, two new and independent methods for gene mapping, using pulsed field gel electrophoresis and an ordered bacteriophage library spanning the entire chromosome, were used to localize the map position of the RF2 gene. In addition, the location of the RF1 gene was more precisely defined. The RF2 gene is located at 62.3 min on the chromosome, while the RF1 gene is located at 26.7 min. This approach to mapping cloned genes promises to be a rapid and simple means for determining the gene order of the genome.  相似文献   

14.
15.
16.
rRNA plays a central role in protein synthesis and is intimately involved in the initiation, elongation, and termination stages of translation. However, the mode of its participation in these reactions, particularly as to the decoding of genetic information, remains elusive. In this paper, we describe a new approach that allowed us to identify an rRNA segment whose function is likely to be related to translation termination. By screening an expression library of random rRNA fragments, we identified a fragment of the Escherichia coli 23S rRNA (nucleotides 74 to 136) whose expression caused readthrough of UGA nonsense mutations in certain codon contexts in vivo. The antisense RNA fragment produced a similar effect, but in neither case was readthrough of UAA or UAG observed. Since termination at UGA in E. coli specifically requires release factor 2 (RF2), our data suggest that the fragments interfere with RF2-dependent termination.  相似文献   

17.
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.  相似文献   

18.
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.  相似文献   

19.
Class 1 peptide release factors (RFs) in Escherichia coli are N(5)-methylated on the glutamine residue of the universally conserved GGQ motif. One other protein alone has been shown to contain N(5)-methylglutamine: E.coli ribosomal protein L3. We identify the L3 methyltransferase as YfcB and show that it methylates ribosomes from a yfcB strain in vitro, but not RF1 or RF2. HemK, a close orthologue of YfcB, is shown to methylate RF1 and RF2 in vitro. hemK is immediately downstream of and co-expressed with prfA. Its deletion in E.coli K12 leads to very poor growth on rich media and abolishes methylation of RF1. The activity of unmethylated RF2 from K12 strains is extremely low due to the cumulative effects of threonine at position 246, in place of alanine or serine present in all other bacterial RFs, and the lack of N(5)-methylation of Gln252. Fast-growing spontaneous revertants in hemK K12 strains contain the mutations Thr246Ala or Thr246Ser in RF2. HemK and YfcB are the first identified methyltransferases modifying glutamine, and are widely distributed in nature.  相似文献   

20.
The termination of protein synthesis in bacteria requires two codon-specific release factors, RF-1 and RF-2. A gene for a third factor, RF-3, that stimulates the RF-1 and RF-2 activities has been isolated from the gram-negative bacteria Escherichia coli and Dichelobacter nodosus. In this work, we isolated the RF-3 gene from Salmonella typhimurium and compared the three encoded RF-3 proteins by immunoblotting and intergeneric complementation and suppression. A murine polyclonal antibody against E. coli RF-3 reacted with both S. typhimurium and D. nodosus RF-3 proteins. The heterologous RF-3 genes complemented a null RF-3 mutation of E. coli regardless of having different sequence identities at the protein level. Additionally, multicopy expression of either of these RF-3 genes suppressed temperature-sensitive RF-2 mutations of E. coli and S. typhimurium by restoring adequate peptide chain release. These findings strongly suggest that the RF-3 proteins of these gram-negative bacteria share common structural and functional domains necessary for RF-3 activity and support the notion that RF-3 interacts functionally and/or physically with RF-2 during translation termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号