首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, an interaction between the replication initiator DnaA and the sliding clamp protein, the beta subunit (DnaN) of DNA polymerase III, is required to regulate the chromosomal replication cycle. We report here that colony formation by, and cell division of, the temperature (42 degrees C)-sensitive dnaN59 mutant are inhibited at 34-35 degrees C when DnaA is moderately (4-to 8-fold ) overexpressed, although chromosomal replication and the beta subunit-dependent regulation of DnaA activity are not significantly inhibited. Immunoblotting analysis revealed that the beta subunit is abundant (present at a level of about 5000 dimers per cell) at 34 degrees C, and its concentration per unit cell volume was practically unaffected in the dnaN59 mutant by the overexpression of DnaA. The dnaN mutant cells that overexpress DnaA become filamentous at 34 degrees C via an sfiA-independent pathway, different from that activated by the SOS response. This filamentation is accompanied by inhibition of nucleoid partition and FtsZ ring formation. In the dnaN59 mutant, oversupply of DnaA may disturb the coordinated action of cell cycle-regulating molecules, thus leading to the inhibition of these events.  相似文献   

2.
The dnaA operon of Escherichia coli contains the genes dnaA, dnaN, and recF encoding DnaA, beta clamp of DNA polymerase III holoenzyme, and RecF. When the DnaA concentration is raised, an increase in the number of DNA replication initiation events but a reduction in replication fork velocity occurs. Because DnaA is autoregulated, these results might be due to the inhibition of dnaN and recF expression. To test this, we examined the effects of increasing the intracellular concentrations of DnaA, beta clamp, and RecF, together and separately, on initiation, the rate of fork movement, and cell viability. The increased expression of one or more of the dnaA operon proteins had detrimental effects on the cell, except in the case of RecF expression. A shorter C period was not observed with increased expression of the beta clamp; in fact, many chromosomes did not complete replication in runout experiments. Increased expression of DnaA alone resulted in stalled replication forks, filamentation, and a decrease in viability. When the three proteins of the dnaA operon were simultaneously overexpressed, highly filamentous cells were observed (>50 micro m) with extremely low viability and, in runout experiments, most chromosomes had not completed replication. The possibility that recombinational repair was responsible for the survival of cells overexpressing DnaA was tested by using mutants in different recombinational repair pathways. The absence of RecA, RecB, RecC, or the proteins in the RuvABC complex caused an additional approximately 100-fold drop in viability in cells with increased levels of DnaA, indicating a requirement for recombinational repair in these cells.  相似文献   

3.
4.
Initiation of DNA replication from oriC in Escherichia coli takes place at a specific time in the cell division cycle, whether the origin is located on a chromosome or a minichromosome, and requires participation of the product of the dnaA gene. The effects of overproduction of DnaA protein on the cell cycle specificity of the initiation event were determined by using minichromosome replication as the assay system. DnaA protein was overproduced by inducing the expression of plasmid-encoded dnaA genes under control of either the ptac or lambda pL promoter. Induction of DnaA protein synthesis caused a burst of minichromosome replication in cells at all ages in the division cycle. The magnitude of the burst was consistent with the initiation of one round of replication per minichromosome in all cells. The replication burst was followed by a period of reduced minichromosome replication, with the reduction being greater at 30 than at 41 degrees C. The results support the idea that the DnaA protein participates in oriC replication at a stage that is limiting for initiation. Excess DnaA protein enabled all cells to achieve the state required for initiation of DNA polymerization by either effecting or overriding the normal limiting process.  相似文献   

5.
Mutants of dnaAcos are inviable at 30°C because DnaAcos hyperinitiates, leading to new replication forks that apparently collide from behind with stalled forks, thereby generating lethal double-strand breaks. By comparison, an elevated level of DnaA also induces extra initiations, but lethality occurs only in strains defective in repairing double-strand breaks. To explore the model that the chromosomal level of DnaAcos, or the increased abundance of DnaA, increases initiation frequency by, escaping or overcoming pathways that control initiation, respectively, we developed a genetic selection and identified seqA , datA , dnaN and hda , which function in pathways that either act at oriC or modulate DnaA activity. To assess each pathway's relative effectiveness, we used genetically inactivated strains, and quantified initiation frequency after elevating the level of DnaA. The results indicate that the hda -dependent pathway has a stronger effect on initiation than pathways involving seqA and datA . Testing the model that DnaAcos overinitiates because it fails to respond to one or more regulatory mechanisms, we show that dnaAcos is unresponsive to hda and dnaN , which encodes the β clamp, and also datA , a locus proposed to titer excess DnaA. These results explain how DnaAcos hyperinitiates to interfere with viability.  相似文献   

6.
7.
In the initiation of bacterial DNA replication, DnaA protein recruits DnaB helicase to the chromosomal origin, oriC, leading to the assemble of the replication fork machinery at this site. Because a region near the N terminus of DnaA is required for self-oligomerization and the loading of DnaB helicase at oriC, we asked if these functions are separable or interdependent by substituting many conserved amino acids in this region with alanine to identify essential residues. We show that alanine substitutions of leucine 3, phenylalanine 46, and leucine 62 do not affect DnaA function in initiation. In contrast, we find on characterization of a mutant DnaA that tryptophan 6 is essential for DnaA function because its substitution by alanine abrogates self-oligomerization, resulting in the failure to load DnaB at oriC. These results indicate that DnaA bound to oriC forms a specific oligomeric structure, which is required to load DnaB helicase.  相似文献   

8.
9.
10.
Excessive initiation of chromosomal replication occurs in the dnaAcos mutant at 30°C. Whereas purified wild-type DnaA protein binds ATP and ADP tightly, DnaAcos protein is defective for such nucleotide binding. As initiation is a multistep reaction and DnaA protein functions at each step, activities of DnaAcos protein need to be examined precisely. DnaAcos protein specifically bound a DNA fragment containing the chromosomal replication origin with an affinity similar to that seen with the wild-type protein. In a system reconstituted with purified proteins at 30°C, the mutant protein initiated replication of single-stranded DNA that contains a DnaA-binding hairpin structure. Thus, DnaAcos protein basically sustains affinity to a DnaA-binding sequence and functions in the loading of DnaB helicase onto single-stranded DNA. Thermal stabilities of wild-type DnaA and DnaAcos activities were comparable. Unlike wild-type DnaA protein, DnaAcos protein was inactive for minichromosomal replication in systems reconstituted with purified proteins in which the ATP-bound form of DnaA protein is required for initiation. Taken together, the data indicate that the prominent defect in DnaAcos protein appears to be the inability to bind nucleotide.  相似文献   

11.
The ATP-bound but not the ADP-bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP-DnaA is repressed to only approximately 20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP-DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP-DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP-DnaA from ADP-DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.  相似文献   

12.
The DnaA protein is essential for initiation of DNA replication in a wide variety of bacterial and plasmid replicons. The replication origin in these replicons invariably contains specific binding sites for the protein, called DnaA boxes. Plasmid P1 contains a set of DnaA boxes at each end of its origin but can function with either one of the sets. Here we report that the location of origin-opening, initiation site of replication forks and directionality of replication do not change whether the boxes are present at both or at one of the ends of the origin. Replication was bidirectional in all cases. These results imply that DnaA functions similarly from the two ends of the origin. However, origins with DnaA boxes proximal to the origin-opening location opened more efficiently and maintained plasmids at higher copy numbers. Origins with the distal set were inactive unless the adjacent P1 DNA sequences beyond the boxes were included. At either end, phasing of the boxes with respect to the remainder of the origin influenced the copy number. Thus, although the boxes can be at either end, their precise context is critical for efficient origin function.  相似文献   

13.
The chromosomal replication origin oriC and the gene encoding the replication initiator protein DnaA from Thermus thermophilus have been identified and cloned into an Escherichia coli vector system. The replication origin is composed of 13 characteristically arranged DnaA boxes, binding sites for the DnaA protein, and an AT-rich stretch, followed by the dnaN gene. The dnaA gene is located upstream of the origin and expresses a typical DnaA protein that follows the division into four domains, as with other members of the DnaA protein family. Here, we report the purification of Thermus-DnaA (Tth-DnaA) and characterize the interaction of the purified protein with the replication origin, with regard to the binding kinetics and stoichiometry of this interaction. Using gel retardation assays, surface plasmon resonance (SPR) and electron microscopy, we show that, unlike the E. coli DnaA, Tth-DnaA does not recognize a single DnaA box, instead a cluster of three tandemly repeated DnaA boxes is the minimal requirement for specific binding. The highest binding affinities are observed with full-length oriC or six clustered, tandemly repeated DnaA boxes. Furthermore, high-affinity DNA-binding of Tth-DnaA is dependent on the presence of ATP. The Thermus DnaA/oriC interaction will be compared with oriC complex formation generated by other DnaA proteins.  相似文献   

14.
Kato J  Katayama T 《The EMBO journal》2001,20(15):4253-4262
The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.  相似文献   

15.
Two key elements that are thought to be required for replication initiation in eubacteria are the DnaA protein, a trans-acting factor, and the replication origin, a cis-acting element. As a first step in studying the replication initiation process in mycobacteria, we have isolated a 4-kb chromosomal DNA fragment from Mycobacterium smegmatis that contains the dnaA gene. Nucleotide sequence analysis of this region revealed homologies with the rpmH gene, which codes for the ribosomal protein L34, the dnaA gene, which codes for the replication initiator protein DnaA, and the 5' end of the dnaN gene, which codes for the beta subunit of DNA polymerase III. Further, we provide evidence that when cloned into pUC18, a plasmid that is nonreplicative in M. smegmatis, the DNA fragment containing the dnaA gene and its flanking regions rendered the former capable of autonomous replication in M. smegmatis. We suggest that the M. smegmatis chromosomal origin of replication is located within the 4-kb DNA fragment.  相似文献   

16.
The ATP-bound DnaA protein opens duplex DNA at the Escherichia coli origin of replication, leading to a series of initiation reactions in vitro. When loaded on DNA, the DNA polymerase III sliding clamp stimulates hydrolysis of DnaA-bound ATP in the presence of the IdaB/Hda protein, thereby yielding ADP-DnaA, which is inactive for initiation in vitro. This negative feedback regulation of DnaA activity is proposed to play a crucial role in the replication cycle. We here report that the mutant protein DnaA R334A is inert to hydrolysis of bound ATP, although its affinities for ATP and ADP remain unaffected. The ATP-bound DnaA R334A protein, but not the ADP form, initiates minichromosomal replication in vitro at a level similar to that seen for wild-type DnaA. When expressed at moderate levels in vivo, DnaA R334A is predominantly in the ATP-bound form, unlike the wild-type and DnaA E204Q proteins, which in vitro hydrolyze ATP in a sliding clamp- and IdaB/Hda-dependent manner. Furthermore, DnaA R334A, but not the wild-type or the DnaA E204Q proteins, promotes overinitiation of chromosomal replication. These in vivo data support a crucial role for bound nucleotides in regulating the activity of DnaA during replication. Based on a homology modeling analysis, we suggest that the Arg-334 residue closely interacts with bound nucleotides.  相似文献   

17.
18.
The requirement of DnaA protein binding for plasmid RK2 replication initiation the Escherichia coli was investigated by constructing mutations in the plasmid replication origin that scrambled or deleted each of the four upstream DnaA boxes. Altered origins were analyzed for replication activity in vivo and in vitro and for binding to the E. coli DnaA protein using a gel mobility shift assay and DNase I footprinting. Most strikingly, a mutation in one of the boxes, box 4, abolished replication activity and eliminated stable DnaA protein binding to all four boxes. Unlike DnaA binding to the E. coli origin, oriC, DnaA binding to two of the boxes (boxes 4 and 3) in the RK2 origin, oriV, is cooperative with box 4 acting as the "organizer" for the formation of the DnaA-oriV nucleoprotein complex. Interestingly, the inversion of box 4 also abolished replication activity, but did not result in a loss of binding to the other boxes. However, DnaA binding to this mutant origin was no longer cooperative. These results demonstrate that the sequence, position, and orientation of box 4 are crucial for cooperative DnaA binding and the formation of a nucleoprotein structure that is functional for the initiation of replication.  相似文献   

19.
In Escherichia coli, initiation of chromosomal replication is activated by a nucleoprotein complex formed primarily between the DnaA protein and oriC (replication origin) DNA. After replicational initiation, this complex has to be inactivated in order to repress the appearance of initiation events until the next scheduled round of initiation. Studies of the mechanisms responsible for this repression have recently revealed direct coupling between these mechanisms and key elements of the replication process, suggesting that feedback-type regulatory loops exist between the factors implicated in initiation and the elements yielded by the replication process. The loading of the ring-shaped beta-subunit of DNA polymerase III onto DNA plays a key role in the inactivation of the DnaA protein. Duplication of oriC DNA results in hemimethylated DNA, which is inert for reinitiation. Titration of large amounts of DnaA protein to a non-oriC locus can repress untimely initiations, and timely duplication of this locus is required for this repression in rapidly growing cells. All these systems functionally complement one another to ensure the maintenance of the interinitiation interval between two normal DNA replication cycles. The mechanisms that link the replication cycle to the progression of the cell cycle are also discussed.  相似文献   

20.
The kinetics of initiation of chromosome replication after induction of DnaA protein synthesis was studied in a dnaA(null) rnh mutant of Escherichia coli. DnaA protein synthesis was induced to different extents using the wild-type dnaA gene controlled by a lac promoter. Initiation of chromosome replication from oriC, measured as an increase in origin to terminus ratio, took place at different times after addition of an inducer dependent on the DnaA protein synthesis rate. The first initiations always occurred when DnaA protein had accumulated approximately to the average wild-type concentration (24 ng of DnaA protein per ml cells at OD450= 1.0) At a low DnaA protein accumulation rate one synchronous round of replication was obtained after 30min of induction. The initiation kinetics obtained when DnaA protein accumulated rapidly was complicated and indicated that other factors might also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号