首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, 1H NMR, 13C NMR, 1H–1H COSY, 1H–13C HMBC) and Marfey’s method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(l-Pro-l-Trp), cyclo(l-Leu-l-Val), cyclo(d-Pro-d-Met), and cyclo(d-Pro-d-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(l-Leu-l-Val). Cyclo(l-Leu-l-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(l-Pro-l-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(l-Pro-l-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete’s foot, jock itch, and ringworm. The activity of cyclo(l-Pro-l-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial secondary metabolites, which may receive greater benefit as potential sources of new drugs in the pharmaceutical industry.  相似文献   

2.

Background

Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C. albicans biofilms.

Methods

Combinations of five antifungal drugs- fluconazole (FLC), voriconazole (VOR), caspofungin (CSP), amphotericin B (AmB) and nystatin (NYT) with cyclosporine A (CSA) were tested in vitro against planktonic and biofilm growth of C. albicans. Standard broth micro dilution method was used to study planktonic growth, while biofilms were studied in an in vitro biofilm model. A chequerboard format was used to determine fractional inhibitory concentration indices (FICI) of combination effects. Biofilm growth was analyzed using XTT-metabolic assay.

Results

MICs of various antifungal drugs for planktonic growth of C. albicans were lowered in combination with CSA by 2 to 16 fold. Activity against biofilm development with FIC indices of 0.26, 0.28, 0.31 and 0.25 indicated synergistic interactions between FLC-CSA, VOR-CSA, CSP-CSA and AmB-CSA, respectively. Increase in efficacy of the drugs FLC, VOR and CSP against mature biofilms after addition of 62.5 μg/ml of CSA was evident with FIC indices 0.06, 0.14 and 0.37, respectively.

Conclusions

The combinations with CSA resulted in increased susceptibility of biofilms to antifungal drugs. Combination of antifungal drugs with CSA would be an effective prophylactic and therapeutic strategy against biofilm associated C. albicans infections.  相似文献   

3.

Background

MUC7 12-mer (RKSYKCLHKRCR), a cationic antimicrobial peptide derived from the human low-molecular-weight salivary mucin MUC7, possesses potent antimicrobial activity in vitro. In order to evaluate the potential therapeutic application of the MUC7 12-mer, we examined the effects of mono- and divalent cations, EDTA, pH, and temperature on its antimicrobial activity.

Methods

Minimal Inhibitory Concentrations (MICs) were determined using a liquid growth inhibition assay in 96-well microtiter plates. MUC7 12-mer was added at concentrations of 1.56–50 μM. MICs were determined at three endpoints: MIC-0, MIC-1, and MIC-2 (the lowest drug concentration showing 10%, 25% and 50% of growth, respectively). To examine the effect of salts or EDTA, a checkerboard microdilution technique was used. Fractional inhibitory concentration index (FICi) was calculated on the basis of MIC-0. The viability of microbial cells treated with MUC7 12-mer in the presence of sodium or potassium was also determined by killing assay or flow cytometry.

Results

The MICs of MUC7 12-mer against organisms tested ranged from 6.25–50 μM. For C. albicans, antagonism (FICi 4.5) was observed for the combination of MUC7 12-mer and calcium; however, there was synergism (FICi 0.22) between MUC7 12-mer and EDTA, and the synergism was retained in the presence of calcium at its physiological concentration (1–2 mM). No antagonism but additivity or indifference (FICi 0.55–2.5) was observed for the combination of MUC7 12-mer and each K+, Na+, Mg2+, or Zn2+. MUC7 12-mer peptide (at 25 μM) also exerted killing activity in the presence of NaCl, (up to 25 mM for C. albicans and up to 150 mM for E. coli, a physiological concentration of sodium in the oral cavity and serum, respectively) and retained candidacidal activity in the presence of KCl (up to 40 mM). The peptide exhibited higher inhibitory activity against C. albicans at pH 7, 8, and 9 than at pH 5 and 6, and temperature up to 60°C did not affect the activity.

Conclusion

MUC7 12-mer peptide is effective anticandidal agent at physiological concentrations of variety of ions in the oral cavity. These results suggest that, especially in combination with EDTA, it could potentially be applied as an alternative therapeutic agent for the treatment of human oral candidiasis.  相似文献   

4.

Background

The present study reports the antibacterial capacity of alkaloid compounds in combination with Methicillin and Ampicillin-resistants bacteria isolated from clinical samples. The resistance of different bacteria strains to the current antibacterial agents, their toxicity and the cost of the treatment have led to the development of natural products against the bacteria resistant infections when applied in combination with conventional antimicrobial drugs.

Method

The antibacterial assays in this study were performed by using inhibition zone diameters, MIC, MBC methods, the time-kill assay and the Fractional Inhibitory Concentration Index (FICI) determination. On the whole, fifteen Gram-positive bacterial strains (MRSA/ARSA) were used. Negative control was prepared using discs impregnated with 10 % DMSO in water and commercially available Methicillin and Ampicillin from Alkom Laboratories LTD were used as positive reference standards for all bacterial strains.

Results

We noticed that the highest activities were founded with the combination of alkaloid compounds and conventional antibiotics against all bacteria strains. Then, results showed that after 7 h exposition there was no viable microorganism in the initial inoculums.

Conclusion

The results of this study showed that alkaloid compounds in combination with conventional antibiotics (Methicillin, Ampicillin) exhibited antimicrobial effects against microorganisms tested. These results validate the ethno-botanical use of Cienfuegosia digitata Cav. (Malvaceae) in Burkina Faso. Moreover, this study demonstrates the potential of this herbaceous as a source of antibacterial agent that could be effectively used for future health care purposes.  相似文献   

5.

Background

Eradication of Helicobacter pylori is an important objective in overcoming gastric diseases. Many regimens are currently available but none of them could achieve 100% success in eradication. Eugenol and cinnamaldehyde that are commonly used in various food preparations are known to possess antimicrobial activity against a wide spectrum of bacteria.

Aim

The present study was performed to assess the in vitro effects of eugenol and cinnamaldehyde against indigenous and standard H. pylori strains, their minimum inhibitory concentrations (MICs) and time course lethal effects at various pH.

Methods

A total of 31 strains (29 indigenous and one standard strain of H. pylori ATCC 26695, one strain of E. coli NCIM 2089) were screened. Agar dilution method was used for the determination of drug sensitivity patterns of isolates to the commonly used antibiotics and broth dilution method for the test compounds.

Results

Eugenol and cinnamaldehyde inhibited the growth of all the 30 H. pylori strains tested, at a concentration of 2 μg/ml, in the 9th and 12th hours of incubation respectively. At acidic pH, increased activity was observed for both the compounds. Furthermore, the organism did not develop any resistance towards these compounds even after 10 passages grown at sub-inhibitory concentrations.

Conclusion

These results indicate that the two bioactive compounds we tested may prevent H. pylori growth in vitro, without acquiring any resistance.  相似文献   

6.

Introduction

Synovial cells are potential sources of inflammatory mediators in bacterial-induced arthritis but their involvement in the inflammatory response to Candida albicans-induced septic arthritis is largely unknown.

Methods

Primary cultures of rat synovial fibroblasts were infected with C. albicans (ATCC90028). Immunocytochemistry, western blotting, and RT-PCR were performed to assess cyclo-oxygenase 2 induction. Phosphorylation of extracellular-regulated kinase (ERK1/2) following infection in the absence or presence of U0126 was assessed by western blotting whilst prostaglandin E2 production was measured by ELISA. Nuclear factor κB (NFκB) translocation was evaluated by an electrophoretic mobility shift assay.

Results

Infection of synovial fibroblasts with C. albicans resulted in cyclo-oxygenase 2 expression and prostaglandin E2 production. Cyclo-oxygenase 2 expression and prostaglandin E2 production was dependent upon extracellular-regulated kinase 1/2 phosphorylation, associated with activation of NFκB and significantly elevated in the presence of laminarin, an inhibitor of dectin-1 activity. Synovial fibroblasts adjacent to C. albicans hyphae aggregates appeared to be the major contributors to the increased levels of cyclo-oxygenase 2 and phosphorylated extracellular-regulated kinase 1/2.

Conclusions

C. albicans infection of synovial fibroblasts in vitro results in upregulation of cyclo-oxygenase 2 and prostaglandin E2 by mechanisms that may involve activation of extracellular-regulated kinase 1/2 and are associated with NFκB activation.  相似文献   

7.

Background

Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies.

Methods

The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide.

Results

Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol.

Conclusions

The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.  相似文献   

8.

Background

The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA.

Methods

40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 106 and 108 cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model.

Results

15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 106 cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 108 cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log10 CFU/ml for agr functional vs. 2.41 log10 CFU/ml for agr dysfunctional MRSA (p = 0.0007).

Conclusions

Dysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.  相似文献   

9.
Currently echinocandins are recommended in Candida peritonitis and pleuritis. We determined micafungin killing rates (k values) at therapeutic concentrations (0.25–2 mg/L) in RPMI-1640 with and without 10 and 30% serum mimicking in vivo conditions against six Candida species isolated from peritoneal and pleural fluid. In RPMI-1640, micafungin was fungicidal against C. glabrata, C. krusei and C. kefyr within 2.27?±?10.68, 2.69?±?10.29 and 3.10?±?4.41 h, respectively, while was fungistatic against C. albicans, C. tropicalis and C. parapsilosis. In 10% serum, ≥?0.25, ≥?0.5, ≥?0.5 and ≥?1 mg/L micafungin produced positive k values (killing) for all C. albicans, C. glabrata, C. kefyr and C. krusei, respectively. In 30% serum, 2 mg/L micafungin produced killing against all C. albicans, C. glabrata and C. kefyr isolates, but was ineffective against C. krusei, C. parapsilosis and 2 of 3 C. tropicalis. Micafungin exposure should be increased against non-albicans species to eradicate fungi from peritoneal and pleural cavities.  相似文献   

10.

Background

There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.

Methods and Results

The activity of the standard antibiotics and compounds on reference methicillin-sensitive and resistant strains of S. aureus were determined using the macrodilution broth method. The minimum inhibitory concentration (MIC) of the compounds was compared with that of the standard antibiotics. The interaction between any two antimicrobial agents was estimated by calculating the fractional inhibitory concentration (FIC index) of the combination. The various combinations of antibiotics and compounds reduced the MIC to a range of 0.05 to 50%.

Conclusion

Pentacyclic triterpenoids have shown anti-staphylococcal activities and although individually weaker than common antibiotics produced from bacteria and fungi, synergistically these compounds may use different mechanism of action or pathways to exert their antimicrobial effects, as implicated in the lowered MICs. Therefore, the use of current antibiotics could be maintained in their combination with plant-derived antibacterial agents as a therapeutic option in the treatment of S. aureus infections.  相似文献   

11.
12.
In order to obtain more structurally novel and bioactive lead compounds for subsequent drug discovery, we have shifted the focus of our study from traditional microbial resources to ‘extremophiles’. In this study, a halotolerant fungus Aspergillus flocculosus PT05-1 was isolated from the sediment of Putian saltern of Fujian Province of China in a hypersaline medium. Two new compounds, (22R,23S)-epoxy-3β,11α,14β,16β-tetrahydroxyergosta-5,7-dien-12-one (1) and 6-(1H-pyrrol-2-yl)hexa-1,3,5-trienyl-4-methoxy-2H-pyran-2-one (5) (existed as a pair of epimers with the configuration of 1E,3Z,5E and 1E,3E,5E separately), along with nine known compounds were isolated and identified from the fermentation broth of A. flocculosus PT05-1 grown at a 10 % saline medium. New ergosteroid 1 together with 7-nor-ergosterolide (2) and 3β-hydroxyergosta-8,24(28)-dien-7-one (3) showed cytotoxicity against HL-60 and BEL-7402 cells with IC50 values of 12–18 μM, and antimicrobial activity against Enterobacter aerogenes, Pseudomonas aeruginosa, and Candida albicans with MIC values of 1.6–15 μM, respectively. New compound 5 exhibited antibacterial effect on E. aerogenes with MIC value of 3.7 μM. This study also showed great prospects in developing medicinal resources from extremophiles.  相似文献   

13.

Aims

To evaluate specific virulence factors of Candida albicans and Candida parapsilosis clinical oral isolates in mono- and dual-species culture in the presence of artificial saliva.

Methods and Results

Two of the strains used in this study were isolated from co-infection (C. albicans AM and C. parapsilosis AM2), and the other two were isolated from single infection (C. albicans AC and C. parapsilosis AD). The number of adhered yeast cells was measured and their enzymatic activity was determined simultaneously. In mono-species culture, C. parapsilosis strains adhered to a higher extent to the surface in comparison with the C. albicans strains. In dual-species culture, the C. parapsilosis strains adhered more in the presence of C. albicans AM. Interestingly, C. albicans AM and C. parapsilosis AD adhered to a higher extent when compared with all other co-cultures. In dual-species culture, the enzymatic activity of C. parapsilosis strains in the presence of C. albicans AC was higher than in the presence of C. albicans AM.

Conclusions

The virulence factors of C. albicans and C. parapsilosis differ from strain to strain and are influenced by the presence of other species in culture.

Significance and Impact of the Study

To understand the expression of virulence factors in Candida dual-species systems.  相似文献   

14.
3-Fluoro-4-(4-phenylpiperazin-l-yl)aniline (II) prepared from 3,4-difluoro nitrobenzene was converted to the corresponding Schiff bases (III) and (IV) by treatment with 4-methoxybenzaldehyde and indol-3-carbaldehyde, respectively. Treatment of amine (II) with 4-fluorophenyl isothiocyanate afforded the corresponding thiourea derivative (V). Compound (V) was converted to thiazolidinone and thiazoline derivatives (VI) and (VII) by cyclocondensation with ethylbromoacetate or 4-chlorophenacylbromide, respectively. The synthesis of carbothioamide derivative (X) was performed starting from compound (II) by three steps. Treatment of compound (X) with sodium hydroxide, sulfuric acid, or chlorophenacyl bromide generated the corresponding 1,2,4-triazole (XI), 1,3,4-thiadiazole (XII), and 1,3-thiazolidinone (XIII) derivatives, respectively. The structural assignments of new compounds were based on their elemental analysis and spectral (IR, 1H-NMR, 13C-NMR, and LC-MS) data. In the antimicrobial activity study all the compounds revealed high anti-Mycobacterium smegmatis activity.  相似文献   

15.
In this work, antimicrobial peptides from Cuminum cyminum L. seeds were isolated and purified for the first time by 50% ethanol extraction, C18 reverse phase column chromatography and ion exchange chromatography for separation different peptides fraction. Then isolated fractions were characterized by Gel electrophoresis (SDS-PAGE), high-pressure liquid chromatography and the peptides components and molecular weights were determined by liquid chromatography and mass spectrometry. The extracts were tested against some strains of bacteria (E. coli and Staphylococcus aureus) and one strain of fungi (Candida albicans) using well diffusion and broth dilution assays. The extracts from C. cyminum L. seeds demonstrated a high degree of activity (some antibacterial effect) against the bacteria strains and аntifungal activity against the Candida albicans. However, the study indicates that the crude peptide extracts from C. cyminum L. seeds have promising antimicrobial and antioxidant activities that can be harnessed as leads for potential bioactive compounds.  相似文献   

16.
17.

Background

Severely burned patients may develop life-threatening nosocomial infections due to Pseudomonas aeruginosa, which can exhibit a high-level of resistance to antimicrobial drugs and has a propensity to cause nosocomial outbreaks. Antiseptic and topical antimicrobial compounds constitute major resources for burns care but in vitro testing of their activity is not performed in practice.

Results

In our burn unit, a P. aeruginosa clone multiresistant to antibiotics colonized or infected 26 patients over a 2-year period. This resident clone was characterized by PCR based on ERIC sequences. We investigated the susceptibility of the resident clone to silver sulphadiazine and to the main topical antimicrobial agents currently used in the burn unit. We proposed an optimized diffusion assay used for comparative analysis of P. aeruginosa strains. The resident clone displayed lower susceptibility to silver sulphadiazine and cerium silver sulphadiazine than strains unrelated to the resident clone in the unit or unrelated to the burn unit.

Conclusions

The diffusion assay developed herein detects differences in behaviour against antimicrobials between tested strains and a reference population. The method could be proposed for use in semi-routine practice of medical microbiology.  相似文献   

18.

Background

Sperm immobilizing activity and plausible mechanism of action of Chenopodium album seed decoction (CAD) have been elucidated in our earlier studies. The present study has been carried out to explore the safety standards of CAD along with microbicidal properties as prerequisite for its use as a topically applicable vaginal contraceptive.

Methods

The safety standards of CAD were assessed by a) Hemolytic index determination using rabbit erythrocytes, to set the doses of the other experiments, b) Dermal irritancy test using refined version of Draize scoring system on rabbits, c) Possible effect on local tissues and reproductive performance in female rats after fourteen daily single dose application, d) PCNA staining- to evaluate the effect of CAD on vaginal tissue proliferation, e) TUNEL assay- to examine its ability to induce in situ apoptosis in the vaginal tissue sections of the treated animals, and f) Microbicidal activity- to explore the effect of CAD on the growth of Lactobacillus acidophilus and Candida albicans.

Results

In vitro irritation studies on rabbit erythrocytes revealed the hemolytic index of CAD to be 8.2 mg/ml. The dermal irritation test showed it to be a non-irritant even at higher doses. Intra vaginal application of CAD in rat vagina for 14 consecutive days caused slight reversible inflammation on vaginal epithelial cells at doses as high as 82 mg/ml. However, at this dose level it neither had any adverse effect on vaginal tissue proliferation nor did it cause in situ apoptosis as evident from PCNA staining and TUNEL assay. Fertility and fecundity were restored 4-15 days after withdrawal of CAD application. At dose level 10 times that of its spermicidal MEC (minimum effective concentration), CAD did not block the growth of Lactobacillus, although the size of individual colony was marginally reduced. However, growth of the pathogenic fungus Candida albicans was completely inhibited with 20 mg/ml of CAD.

Conclusion

The overall result evolved from the study strengthens the candidature of CAD as a safe microbicidal spermicide. It is almost non-irritant to rabbit skin and rat vaginal tissues at doses 10 fold higher than its hemolytic index. The effect of CAD on Lactobacillus culture was not highly encouraging but it prevented the growth of the fungal pathogen Candida albicans at 20 mg/ml of CAD.  相似文献   

19.

Key message

Efficient Agrobacterium -mediated genetic transformation for investigation of genetic and molecular mechanisms involved in inflorescence architectures in Cornus species.

Abstract

Cornus canadensis is a subshrub species in Cornus, Cornaceae. It has recently become a favored non-model plant species to study genes involved in development and evolution of inflorescence architectures in Cornaceae. Here, we report an effective protocol of plant regeneration and genetic transformation of C. canadensis. We use young inflorescence buds as explants to efficiently induce calli and multiple adventitious shoots on an optimized induction medium consisting of basal MS medium supplemented with 1 mg/l of 6-benzylaminopurine and 0.1 mg/l of 1-naphthaleneacetic acid. On the same medium, primary adventitious shoots can produce a large number of secondary adventitious shoots. Using leaves of 8-week-old secondary shoots as explants, GFP as a reporter gene controlled by 35S promoter and hygromycin B as the selection antibiotic, a standard procedure including pre-culture of explants, infection, co-cultivation, resting and selection has been developed to transform C. canadensis via Agrobacterium strain EHA105-mediated transformation. Under a strict selection condition using 14 mg/l hygromycin B, approximately 5 % explants infected by Agrobacterium produce resistant calli, from which clusters of adventitious shoots are induced. On an optimized rooting medium consisting of basal MS medium supplemented with 0.1 mg/l of indole-3-butyric acid and 7 mg/l hygromycin B, most of the resistant shoots develop adventitious roots to form complete transgenic plantlets, which can grow normally in soil. RT-PCR analysis demonstrates the expression of GFP transgene. Green fluorescence emitted by GFP is observed in transgenic calli, roots and cells of transgenic leaves under both stereo fluorescence microscope and confocal microscope. The success of genetic transformation provides an appropriate platform to investigate the molecular mechanisms by which the various inflorescence forms are developed in Cornus plants.  相似文献   

20.
In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium–ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes—cis,fac-[RuIICl2(DMSO)3(KTZ)] (1) and cis-[RuIICl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2′-bipyridine)—and four organometallic compounds—[RuII6-p-cymene)Cl2(KTZ)] (3), [RuII6-p-cymene)(en)(KTZ)][BF4]2 (4), [RuII6-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [RuII6-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with RuII in compounds 35 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 35 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号