首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli rluD gene encodes a pseudouridine synthase responsible for the pseudouridine (Ψ) modifications at positions 1911, 1915, and 1917 in helix 69 of 23S rRNA. It has been reported that deletion of rluD in K-12 strains of E. coli is associated with extremely slow growth, increased readthrough of stop codons, and defects in 50S ribosomal subunit assembly and 30S-50S subunit association. Suppressor mutations in the prfB and prfC genes encoding release factor 2 (RF2) and RF3 that restore the wild type-growth rate and also correct the ribosomal defects have now been isolated. These suppressors link helix 69 Ψ residues with the termination phase of protein synthesis. However, further genetic analysis reported here also reveals that the slow growth and other defects associated with inactivation of rluD in E. coli K-12 strains are due to a defective RF2 protein, with a threonine at position 246, which is present in all K-12 strains. This is in contrast to the more typical alanine found at this position in most bacterial RF2s, including those of other E. coli strains. Inactivation of rluD in E. coli strains containing the prfB allele from E. coli B or in Salmonella enterica, both carrying an RF2 with Ala246, has negligible effects on growth, termination, or ribosome function. The results indicate that, in contrast to those in wild bacteria, termination functions in E. coli K-12 strains carrying a partially defective RF2 protein are especially susceptible to perturbation of ribosome-RF interactions, such as that caused by loss of h69 Ψ modifications.  相似文献   

2.
In this issue of Molecular Microbiology, Schaub and Hayes report that, compared with other enterobacteria, Escherichia coli K12 carries two mutations - one in the prfB gene encoding the release factor RF2, and the other in the rpsG gene encoding r-protein S7 - that together concur in compromising translation termination at the essential rpsG gene. As a consequence, the growth of E. coli K12 is very sensitive to a further mutation (rluD(-) ) that depresses RF2 activity, whereas the growth of its close relative, E. coli B, is not. We tentatively discuss how the K12-specific mutations in RF2 and S7 might have occurred and why inefficient translation termination at rpsG inhibits growth. The work of Schaub and Hayes illustrates the fact that, due probably to its long history in the laboratory, E. coli K12 has accumulated mutations that sometimes limit its value as a model for studying basic steps in prokaryotic gene expression.  相似文献   

3.
A post-translational modification affecting the translation termination rate was identified in the universally conserved GGQ sequence of release factor 2 (RF2) from Escherichia coli, which is thought to mimic the CCA end of the tRNA molecule. It was shown by mass spectrometry and Edman degradation that glutamine in position 252 is N:(5)-methylated. Overexpression of RF2 yields protein lacking the methylation. RF2 from E.coli K12 is unique in having Thr246 near the GGQ motif, where all other sequenced bacterial class 1 RFs have alanine or serine. Sequencing the prfB gene from E.coli B and MRE600 strains showed that residue 246 is coded as alanine, in contrast to K12 RF2. Thr246 decreases RF2-dependent termination efficiency compared with Ala246, especially for short peptidyl-tRNAs. Methylation of Gln252 increases the termination efficiency of RF2, irrespective of the identity of the amino acid in position 246. We propose that the previously observed lethal effect of overproducing E.coli K12 RF2 arises through accumulating the defects due to lack of Gln252 methylation and Thr246 in place of alanine.  相似文献   

4.
Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable P(BAD) promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a P(BAD)-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.  相似文献   

5.
U Johanson  D Hughes 《Gene》1992,120(1):93-98
The nucleotide (nt) sequences of the str operon in Escherichia coli K-12 and Salmonella typhimurium LT2 were completed and compared at the nt and amino acid (aa) level. The order of conservation at the nt and aa level is rpsL greater than tufA greater than rpsG greater than f usA. A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium. The very low (0.18) codon adaptation index of this part of the E. coli K-12-encoding gene and the unusual stop codon (UGA) suggest that this is a relatively recent extension. A trend towards a higher G+C content in fusA (gene encoding elongation factor (EF)-G) and tufA (gene encoding EF-Tu) in S. typhimurium is noted. In fusA, nt substitutions at all three positions in a codon occur at a much higher frequency than expected from the number of nt substitutions in the gene, assuming they are random and independent events. An analysis of substitutions in this and other genes suggests that the triple substitutions in fusA, and some other genes, are the result of the sequential accumulation of individual mutations, probably driven by selection pressure for particular codons or aa.  相似文献   

6.
An Escherichia coli strain, B-62, that was isolated from a clinical source and was epidemiologically unrelated to E. coli K-12 was the source of chromosomal DNA for a sucrose utilization system (Scr+) in the construction of a plasmid, pST621. The cloned insert of a gene encoding Scr+ in pST621 conferred a sucrose-positive phenotype onto transformed cells of E. coli K-12 derivatives. Sucrase activity of the transformants was as high as that which would correspond to a "gene dosage effect" of a vector plasmid pBR322, whereas the transformants' sucrose uptake activity was always lower than that of E. coli B-62. A region within an XhoI-SacI fragment (3.2 kb) of pBR322-glyA was replaced in the construction of another plasmid, pST5R7, by a fragment (about 2.6 kb) of pST622 containing the gene encoding Scr+. A genetically stable Scr+ derivative of E. coli K-12 was obtained by introducing the gene encoding Scr+ onto E. coli chromosome via homologous recombination between pST5R7 and the chromosome and subsequent plasmid segregation. The use of low-copy-number plasmid RP4 as a cloning vector was also effective for enhancing the stability of Scr+. Tryptophan producers E. coli SGIII1032S, in which the gene encoding Scr+ was cloned onto the chromosome, and E. coli SGIII1032, which carried Scr+ plasmid RP4.5R7, produced from 6% sucrose in shake flasks (33 degrees C, 96 h) 2.3 and 5.7 g of tryptophan per liter, respectively.  相似文献   

7.
An Escherichia coli strain, B-62, that was isolated from a clinical source and was epidemiologically unrelated to E. coli K-12 was the source of chromosomal DNA for a sucrose utilization system (Scr+) in the construction of a plasmid, pST621. The cloned insert of a gene encoding Scr+ in pST621 conferred a sucrose-positive phenotype onto transformed cells of E. coli K-12 derivatives. Sucrase activity of the transformants was as high as that which would correspond to a "gene dosage effect" of a vector plasmid pBR322, whereas the transformants' sucrose uptake activity was always lower than that of E. coli B-62. A region within an XhoI-SacI fragment (3.2 kb) of pBR322-glyA was replaced in the construction of another plasmid, pST5R7, by a fragment (about 2.6 kb) of pST622 containing the gene encoding Scr+. A genetically stable Scr+ derivative of E. coli K-12 was obtained by introducing the gene encoding Scr+ onto E. coli chromosome via homologous recombination between pST5R7 and the chromosome and subsequent plasmid segregation. The use of low-copy-number plasmid RP4 as a cloning vector was also effective for enhancing the stability of Scr+. Tryptophan producers E. coli SGIII1032S, in which the gene encoding Scr+ was cloned onto the chromosome, and E. coli SGIII1032, which carried Scr+ plasmid RP4.5R7, produced from 6% sucrose in shake flasks (33 degrees C, 96 h) 2.3 and 5.7 g of tryptophan per liter, respectively.  相似文献   

8.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions.  相似文献   

9.
A Bacillus subtilis prfB45 mutant grew at 42 degrees C, but its sporulation was severely defective at 37 degrees C. Sporulation-specific induction of kinA, spo0A, and spo0H genes was inhibited in the mutant. The effects of temperature up-shift and down-shift on sporulation of the prfB45 mutant was observed at an early stage of sporulation. UGA readthrough frequency at non-permissive temperatures for sporulation was higher in the mutant than in the wild-type strain. Temperature-sensitive sporulation of the prfB45 mutant was suppressed by mutations in rpsL coding for S12 of ribosomes, required for accurate termination of translation. Additionally, spontaneous second-site mutations that suppressed the sporulation phenotype of the prfB45 strain were found in the rpoB gene. These results suggest that accurate termination of translation is required for proper initiation of sporulation.  相似文献   

10.
11.
12.
We have isolated a 2.5-kb DNA fragment from plasmid pST5R7 encoding a sucrose utilization system from Escherichia coli B-62 which confers a sucrose-fermenting phenotype to transformed E. coli K-12 strains. DNA-sequence determination revealed one full-length open reading frame 98% identical to cscA, the sucrose-hydrolase (invertase) gene of the csc regulon from E. coli EC3132. Functional characterization indicates that high-level expression and limited periplasmic release of invertase is responsible for the sucrose-fermenting capacity of transformed E. coli K-12 strains carrying cscA.  相似文献   

13.
Strains carrying mutations in the prfB gene encoding peptide chain release factor 2 of Escherichia coli were isolated. prfB1, prfB2, and prfB3 were selected as suppressor mutations of a lacZ (UGA) mutation at 37 degrees C, one of which, prfB2, is temperature sensitive in growth. A prfB286 strain was selected as a conditionally lethal mutant which grows at 32 but not at 43 degrees C and was shown to have UGA-suppressor activity. All the mutations are recessive UGA-suppressors. These data indicate that release factor 2 is essential to E. coli growth and that all mutants isolated here trigger suppression of the UGA codon.  相似文献   

14.
Bacteriophage T7 RNA polymerase is stable in Escherichia coli but very susceptible to cleavage by at least one endoprotease after cell lysis. The major source of this endoprotease activity was found to be localized to the outer membrane of the cell. A rapid whole-cell assay was developed to screen different strains for the presence of this proteolytic activity. Using this assay, we identified some common laboratory strains that totally lack the protease. Genetic and Southern analyses of these null strains allowed us to conclude that the protease that cleaves T7 RNA polymerase is OmpT (formerly termed protein a), a known outer membrane endoprotease, and that the null phenotype results from deletion of the OmpT structural gene. A recombinant plasmid carrying the ompT gene enables these deletion strains to synthesize OmpT and converts them to a protease-positive phenotype. The plasmid led to overproduction of OmpT protein and protease activity in the E. coli K-12 and B strains we used, but only weak expression in the E. coli C strain, C1757. This strain-dependent difference in ompT expression was investigated with respect to the known influence of envZ on OmpT synthesis. A small deletion in the ompT region of the plasmid greatly diminishes the amount of OmpT protein and plasmid-encoded protease present in outer membranes. Use of ompT deletion strains for production of T7 RNA polymerase from the cloned gene has made purification of intact T7 RNA polymerase routine. Such strains may be useful for purification of other proteins expressed in E. coli.  相似文献   

15.
H Ito  N Kido  Y Arakawa  M Ohta  T Sugiyama    N Kato 《Applied microbiology》1991,57(10):2912-2917
A Southern hybridization analysis revealed that the region homologous to Escherichia coli lacZ was present on the chromosomal DNAs of beta-galactosidase-positive Shigella strains, such as Shigella dysenteriae serovar 1 and Shigella sonnei strains, whereas this region was absent from chromosomal DNAs of beta-galactosidase-negative strains of Shigella flexneri and Shigella boydii. We found that the lacY-A region was deficient in S. dysenteriae serovar 1 and believe that this is the reason for the slow fermentation of lactose by this strain. S. sonnei strains possessed the region which hybridized with E. coli lacY-A despite their slow hydrolysis of lactose. The whole lactose-fermenting region was cloned from S. sonnei and compared with the cloned lac operon of E. coli K-12. Both clones directed the synthesis of beta-galactosidase in an E. coli K-12 strain lacking indigenous beta-galactosidase activity (strain JM109-1), and we observed no difference in the expression of beta-galactosidase activity in S. sonnei and E. coli. However, E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei exhibited the slow lactose fermentation phenotype like the parental strain. S. sonnei strains had no detectable lactose permease activities. E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei had a detectable permease activity, possibly because of the multicopy nature of the cloned genes, but this permease activity was much lower than that of strain JM109-1 harboring the lac operon of E. coli K-12. From these results we concluded that slow lactose fermentation by S. sonnei is due to weak lactose permease activity.  相似文献   

16.
L A Gukova  I D Avdienko 《Genetika》1978,14(7):1278-1280
The contransduction frequency of MAAs, UVs phenotype of Escherichia coli HfrC7 and its 7-51F- derivative with purE markers is found to be 1-2% which indicates that the mutation N 7 is located close to the F integration site in HfrC strain. E. coli strains K-12 7-51F+ and 7-51ColV2+ transfer chromosome markers in the same direction as does HfrC strain. The results suggest the presence of an integrated F fragment (sfa locus) into K-12 7-51F- chromosome.  相似文献   

17.
A Southern hybridization analysis revealed that the region homologous to Escherichia coli lacZ was present on the chromosomal DNAs of beta-galactosidase-positive Shigella strains, such as Shigella dysenteriae serovar 1 and Shigella sonnei strains, whereas this region was absent from chromosomal DNAs of beta-galactosidase-negative strains of Shigella flexneri and Shigella boydii. We found that the lacY-A region was deficient in S. dysenteriae serovar 1 and believe that this is the reason for the slow fermentation of lactose by this strain. S. sonnei strains possessed the region which hybridized with E. coli lacY-A despite their slow hydrolysis of lactose. The whole lactose-fermenting region was cloned from S. sonnei and compared with the cloned lac operon of E. coli K-12. Both clones directed the synthesis of beta-galactosidase in an E. coli K-12 strain lacking indigenous beta-galactosidase activity (strain JM109-1), and we observed no difference in the expression of beta-galactosidase activity in S. sonnei and E. coli. However, E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei exhibited the slow lactose fermentation phenotype like the parental strain. S. sonnei strains had no detectable lactose permease activities. E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei had a detectable permease activity, possibly because of the multicopy nature of the cloned genes, but this permease activity was much lower than that of strain JM109-1 harboring the lac operon of E. coli K-12. From these results we concluded that slow lactose fermentation by S. sonnei is due to weak lactose permease activity.  相似文献   

18.
I van Die  B van Geffen  W Hoekstra  H Bergmans 《Gene》1985,34(2-3):187-196
The genes responsible for expression of type 1C fimbriae have been cloned from the uropathogenic Escherichia coli strain AD110 in the plasmid vector pACYC184. Analysis of deletion mutants from these plasmids showed that a 7-kb DNA fragment was required for biosynthesis of 1C fimbriae. Further analysis of this DNA fragment showed that four genes are present encoding proteins of 16, 18.5, 21 and 89 kDal. A DNA fragment encoding the 16-kDal fimbrial subunit has been cloned. The nucleotide sequence of the structural gene and of the C- and N-terminal flanking regions was determined. The structural gene codes for a polypeptide of 181 amino acids, including a 24-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the 1C subunit gene were compared with the sequences of the fimA gene, encoding the type 1 fimbrial subunit of E. coli K-12. The data show absolute homology at the N- and C-termini; there is less, but significant homology in the region between the N- and C-termini. Comparison of the amino acid compositions of the 1C and FimA subunit proteins with those of the F72 and PapA proteins (subunits for P-fimbriae) revealed that homology between these two sets of fimbrial subunits is also maximal at the N- and C-termini.  相似文献   

19.
20.
The Mycobacterium smegmatis rpsL and rpsG genes, encoding the ribosomal proteins S12 and S7, were cloned, and their DNA sequence was determined. The third nucleotide of the S12 termination codon overlapped the first nucleotide of the S7 translation initiation codon. A collection of 28 spontaneous streptomycin-resistant mutants of M. smegmatis were isolated. All had single-base-pair substitutions in the rpsL gene which were changed to a streptomycin-sensitive phenotype by complementation with a low-copy-number plasmid carrying the wild-type M. smegmatis rpsL gene. A total of eight different mutations were found in two specific regions of the rpsL gene. Fifty-seven percent (16 of 28) altered the Lys codon at position 43. Forty-six percent of the mutations (13 of 28) were due to a transition changing an AAG Lys codon to an AGG Arg codon, with eight changes at codon 43 and five at codon 88.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号