首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many reporter genes, such as gfp, gusA, and lacZ, are widely used for research into plants, animals, and microorganisms. Reporter genes, which offer high levels of sensitivity and convenience of detection, have been utilized in transgenic technology, promoter analysis, drug screening, and other areas. Directed molecular evolution is a powerful molecular tool for the creation of designer proteins for industrial and research applications, including studies of protein structure and function. Directed molecular evolution is based mainly on in vitro recombination methods, such as error-prone PCR and DNA shuffling. The strategies of directed evolution of enzyme biocatalysts have been the subject of several recent reviews. Here, we briefly summarize successes in the field of directed molecular evolution of reporter genes and discuss some of the applications.  相似文献   

2.
Many reporter genes, such as gfp, gusA, and lacZ, are widely used for research into plants, animals, and microorganisms. Reporter genes, which offer high levels of sensitivity and convenience of detection, have been utilized in transgenic technology, promoter analysis, drug screening, and other areas. Directed molecular evolution is a powerful molecular tool for the creation of designer proteins for industrial and research applications, including studies of protein structure and function. Directed molecular evolution is based mainly on in vitro recombination methods, such as error-prone PCR and DNA shuffling. The strategies of directed evolution of enzyme biocatalysts have been the subject of several recent reviews. Here, we briefly summarize successes in the field of directed molecular evolution of reporter genes and discuss some of the applications.  相似文献   

3.
Accumulation of plastics in the environment became a geological indicator of the Anthropocene era. An effective reduction of long-lasting plastics requires a treatment with micro-organisms that release polymer-degrading enzymes. Polymer binding peptides function as adhesion promoters and enable a targeted binding of whole cells to polymer surfaces. An esterase A-based Escherichia coli cell surface display screening system was developed, that enabled directed evolution of polymer binding peptides for improved binding strength to polymers. The E. coli cell surface screening system facilitates an enrichment of improved binding peptides from a culture broth through immobilization of whole cells on polymer beads. The polypropylene (PP)-binding peptide liquid chromatography peak I (LCI) was simultaneously saturated at five positions (Y29, D31, G35, E42, and D45; 3.2 million variants) and screened for improved PP-binding in the presence of the anionic surfactant sodium dodecylbenzenesulfonate (LAS; 0.25 mM). The cell surface system enabled efficient screening of the generated LCI diversity (in total ~10 million clones were screened). Characterization of identified LCI binders revealed an up to 12-fold improvement (eGFP-LCI-CSD-3: E42V/D45H) in PP-binding strength in the presence of the surfactant LAS (0.125 mM). The latter represents a first whole cell display screening system to improve adhesion peptides which can be used to direct and to immobilize organisms specifically to polymer surfaces (e.g., PP) and novel applications (e.g., in targeted plastic degradation).  相似文献   

4.
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.  相似文献   

5.
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator.  相似文献   

6.
7.
Alveolates are a diverse group of protists that includes three major lineages: ciliates, apicomplexa, and dinoflagellates. Among these three, it is thought that the apicomplexa and dinoflagellates are more closely related to one another than to ciliates. However, this conclusion is based almost entirely on results from ribosomal RNA phylogeny because very few morphological characters address this issue and scant molecular data are available from dinoflagellates. To better examine the relationships between the three major alveolate groups, we have sequenced six genes from the non-photosynthetic dinoflagellate, Crypthecodinium cohnii: actin, beta-tubulin, hsp70, BiP, hsp90, and mitochondrial hsp10. Beta-tubulin, hsp70, BiP, and hsp90 were found to be useful for intra-alveolate phylogeny, and trees were inferred from these genes individually and in combination. Trees inferred from individual genes generally supported the apicomplexa-dinoflagellate grouping, as did a combined analysis of all four genes. However, it was also found that the outgroup had a significant effect on the topology within alveolates when using certain methods of phylogenetic reconstruction, and an alternative topology clustering dinoflagellates and ciliates could not be rejected by the combined data. Altogether, these results support the sisterhood of apicomplexa and dinoflagellates, but point out that the relationship is not as strong as is often assumed.  相似文献   

8.
Regulation of the avidity of LFA-1 (CD11a/CD18, alpha L beta 2) for its ligand ICAM-1 (CD54) was studied in human B cells by evaluating the effects of a phorbol ester, anti-IgM antibodies, staurosporine, and okadaic acid. We monitored changes in LFA-1 avidity by quantifying binding of cells to an immobilized rICAM-1 fusion protein. In this assay, the protein kinase C-activating phorbol ester PDB and anti-IgM antibodies, as well as the protein kinase inhibitor, staurosporine, were able to induce LFA-1-dependent binding to ICAM-1. This demonstrates that the high avidity state of LFA-1 can be induced by a protein kinase C-dependent and by a protein kinase C-independent pathway. Furthermore, treatment of the cells with the protein phosphatase inhibitor, okadaic acid, inhibited binding to ICAM-1. Treatment with staurosporine before addition of okadaic acid not only induced enhanced binding of cells to ICAM-1, but also dramatically reduced the ability of okadaic acid to inhibit binding. These results suggest a critical role for a protein phosphatase in inducing the high avidity state of LFA-1 as well as a role for a protein kinase in inducing the low avidity state of LFA-1.  相似文献   

9.
Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene.  相似文献   

10.
Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach.  相似文献   

11.
The ability of human IgA myeloma immunoglobulins to interact with protein A-containing Staphylococcus aureus was examined. Some IgA1 and IgA2 immunoglobulins bound to S. aureus although others of both subclasses failed to do so. These results were obtained by using both direct binding of radiolabeled immunoglobulins to S. aureus and with inhibition-type assays. Binding was dependent on the Fc fragment of IgA since there was no binding to S. aureus by an F(ab')2 fragment of IgA1. Nonprotein A-containing bacteria did not bind these immunoglobulins and isolated protein A interacted with radiolabeled immunoglobulins. This strongly suggested that protein A was responsible for the observed binding to S. aureus. These data indicate, in contrast to previous reports, that there is no simple relationship between IgA subclass and the capacity to bind to protein A.  相似文献   

12.
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences.  相似文献   

13.
Chronic hepatitis C virus (HCV) infection is a significant worldwide health problem with limited therapeutic options. A number of novel, small molecular inhibitors of HCV replication are now entering early clinical trials in humans. Resistance to small molecular inhibitors is likely to be a significant hurdle to their use in patients. A systematic assessment of combinations of interferon and/or novel anti-hepatitis C virus agents from several different mechanistic classes was performed in vitro. Combinations of inhibitors with different mechanisms of action consistently demonstrated more synergy than did compounds with similar mechanisms of action. These results suggest that combinations of inhibitors with different mechanisms of action should be prioritized for assessment in clinical trials for chronic hepatitis C virus infection.  相似文献   

14.
There is strong interest in the design of bispecific monoclonal antibodies (bsAbs) that can simultaneously bind 2 distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Multiple bispecific formats have been proposed and are currently under development. Regeneron's bispecific technology is based upon a standard fully human IgG antibody in order to minimize immunogenicity and improve the pharmacokinetic profile. A single common light chain and 2 distinct heavy chains combine to form the bispecific molecule. One of the heavy chains contains a chimeric Fc sequence form (called Fc*) that ablates binding to Protein A via the constant region. As a result of co-expression of the 2 heavy chains and the common light chain, 3 products are created, 2 of which are homodimeric for the heavy chains and one that is the desired heterodimeric bispecific product. The Fc* sequence allows selective purification of the FcFc* bispecific product on commercially available affinity columns, due to intermediate binding affinity for Protein A compared to the high avidity FcFc heavy chain homodimer, or the weakly binding Fc*Fc* homodimer. This platform requires the use of Protein A chromatography in both a capture and polishing modality. Several challenges, including variable region Protein A binding, resin selection, selective elution optimization, and impacts upon subsequent non-affinity downstream unit operations, were addressed to create a robust and selective manufacturing process.  相似文献   

15.
[目的]红色亚栖热菌(Meiothermus ruber)海藻糖合酶(Trehalose synthase,M-TreS)将麦芽糖转化生成海藻糖只需一步反应,且具有很好的热稳定性及pH耐受性,是潜在的工业生产海藻糖的酶源.为了提高该酶的性能,有必要对其进行定向进化.[方法]M-TreS基因(M-treS)大小为2 889bp.该蛋白质分子本身具有很大的进化空间,但是却不宜进行全长基因Shuffling.分段DNA shuffling是为大分子蛋白质(基因≥2 000 bp)的进化而设计的一种方法.该方法分为三步:(1)用两对引物分别扩增目的基因的上游片段和下游片段;(2)上下游片段各自进行Shuffling; (3)利用重叠延伸PCR连接上下游突变群,建立完整基因的突变文库.[结果]结合易错PCR,通过该方法经一轮进化获得一株酶活力是野生型1.6倍、催化效率是野生型2倍的突变株.序列分析表明,该突变株共有6个位点发生了氨基酸的替代,其中一个来自易错突变,2个来自同源重组,3个为随机突变.[结论]分段DNA shuffling是进化大分子蛋白质的有效方法.  相似文献   

16.
The design, synthesis, and inhibition properties of two new triglyceride analogue biotinylated suicide inhibitors (2) and (3) for directed molecular evolution of lipolytic enzymes by phage-display is described.  相似文献   

17.
Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycB(reverse) and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a "spacer." The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.  相似文献   

18.
Propeptides are short sequences that facilitate the folding of their associated proteins. The present study found that the propeptide of Rhizomucor miehei lipase (RML) was not proteolytically removed in Escherichia coli. Moreover, RML was not expressed if the propeptide was removed artificially during the cloning process in E. coli. This behavior in E. coli permitted the application of directed evolution to full-length RML, which included both propeptide and catalytic domain, to explore the role played by the propeptide in governing enzyme activity. The catalytic rate constant, k (cat), of the most active mutant RML protein (Q5) was increased from 10.63?±?0.80 to 71.44?±?3.20?min(-1) after four rounds of screening. Sequence analysis of the mutant displayed three mutations in the propeptide (L57V, S65A, and V67A) and two mutations in the functional region (I111T and S168P). This result showed that improved activity was obtained with essential involvement by mutations in the propeptide, meaning that the majority of mutants with enhanced activity had simultaneous mutations in propeptide and catalytic domains. This observation leads to the hypothesis that directed evolution has simultaneous and synergistic effects on both functional and propeptide domains that arise from the role played by the propeptide in the folding and maturation of the enzyme. We suggest that directed evolution of full-length proteins including their propeptides is a strategy with general validity for extending the range of conformations available to proteins, leading to the enhancement of the catalytic rates of the enzymes.  相似文献   

19.
The nature of IgA-binding cells and their tissue distribution was examined by an indirect immunofluorescence assay with the use of IgA1 and IgA2 paraproteins and fluorochrome- or biotin-labeled F(ab')2 fragments of idiotype-specific antibodies. The frequency of IgA-binding mononuclear cells was approximately 13% in blood and spleen samples but less than 1% in tonsil samples. IgA binding could be visualized by flow immunocytometry on monocyte/macrophages, but not on T and B cells. IgA polymers were bound better than IgA dimers and monomers. Nonhomologous IgA myelomas of both IgA1 and IgA2 subclasses inhibited the IgA-binding to monocytes, whereas aggregated normal serum IgG, IgM paraproteins, and an IgG myeloma did not. IgA binding was relatively insensitive to changes in temperature or cation concentration. IgA-binding monocytes were found in IgA-deficient patients at the same frequency as in normal individuals. The results indicate that monocytes constitutively express class-specific binding sites for both IgA1 and IgA2 molecules.  相似文献   

20.
An estimated 65% of infective diseases are associated with the presence of bacterial biofilms. Biofilm-issued planktonic cells promote blood-borne, secondary sites of infection by the inoculation of the infected sites with bacteria from the intravascular space. To investigate the potential role of early detachment events in initiating secondary infections, we studied the phenotypic attributes of Staphylococcus aureus planktonic cells eroding from biofilms with respect to expression of the collagen adhesin, CNA. The collagen-binding abilities of S. aureus have been correlated to the development of osteomyelitis and septic arthritis. In this study, we focused on the impact of CNA expression on S. aureus adhesion to immobilized collagen in vitro under physiologically relevant shear forces. In contrast to the growth phase-dependent adhesion properties characteristic of S. aureus cells grown in suspension, eroding planktonic cells expressed invariant and lower effective adhesion rates regardless of the age of the biofilm from which they originated. These results correlated directly with the surface expression level of CNA. However, subsequent analysis revealed no qualitative differences between biofilms initiated with suspension cells and secondary biofilms initiated with biofilm-shed planktonic cells. Taken together, our findings suggest that, despite their low levels of CNA expression, S. aureus planktonic cells shed from biofilms retain the capacity for metastatic spread and the initiation of secondary infection. These findings demonstrate the need for a better understanding of the phenotypic properties of eroding planktonic cells, which could lead to new therapeutic strategies to target secondary infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号