首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activin as a morphogen in Xenopus mesoderm induction.   总被引:3,自引:0,他引:3  
Activin, a member of the Transforming Growth Factor beta (TGF-beta) superfamily, can behave as a morphogen in cells of the early Xenopus embryo by inducing a range of mesodermal genes in a concentration-dependent manner. This review examines the behaviour of activin as it forms a morphogen gradient. It also discusses how a cell can perceive its position in a concentration gradient in order to activate appropriate mesodermal gene responses.  相似文献   

2.
Abstract The Dickkopf (Dkk) family is composed of four main members (Dkk1–4), which typically regulate Wnt/β-catenin signaling. An exception is Dkk3, which does not affect Wnt/β-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.  相似文献   

3.
Clonal analysis of mesoderm induction in Xenopus laevis   总被引:2,自引:0,他引:2  
Acidic fibroblast growth factor (aFGF) has been used to induce mesoderm from single animal pole cells of midblastula stage Xenopus embryos. The cells are individually cultured in a completely defined medium and are able to differentiate as small clones in a high proportion of cases. FGF-treated cells can give rise to several mesodermal cell types, while untreated cells show only epidermal or neural differentiation. Mesodermal differentiation can occur in clones of as few as eight cells, indicating that any additional cell-cell interactions required for mesodermal differentiation can be met by the medium used.  相似文献   

4.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

5.
The Brachyury (T) gene is required for mesoderm formation in the mouse. In this paper we describe the cloning and expression of a Xenopus homolog of Brachyury, Xbra. As with Brachyury in the mouse, Xbra is expressed in presumptive mesodermal cells around the blastopore, and then in the notochord. We show that expression of Xbra occurs as a result of mesoderm induction in Xenopus, both in response to the natural signal and in response to the mesoderm-inducing factors activin A and basic FGF. Expression of Xbra in response to these factors is rapid, and will occur in dispersed cells and in the presence of a protein synthesis inhibitor, indicating that this is an "immediate-early" response to mesoderm induction.  相似文献   

6.
7.
Endodermal Nodal-related signals and mesoderm induction in Xenopus   总被引:7,自引:0,他引:7  
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derrière, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.  相似文献   

8.
Mesoderm induction by the mesoderm of Xenopus neurulae   总被引:1,自引:0,他引:1  
Combinations were made between explants of mesoderm from the archenteron roof of early Xenopus neurulae and explants of ectoderm from mid-blastulae. In each combination one component was labeled with the fluorescent lineage label RDA (rhodamine-dextran-amine). Frequent and large mesoderm inductions, consisting mainly of muscle, were found where the presomite plate was used as the inducer. Less frequent and smaller mesoderm inductions were found when notochord was used as the inducer. We conclude that induced mesoderm can itself be active as a mesoderm inducing tissue. If this capability is acquired in the blastula then it follows that mesoderm induction must propagate from cell to cell and its spread be antagonized by some other factor.  相似文献   

9.
Mesoderm of early vertebrate embryos gradually acquires dorsal–ventral polarity during embryogenesis. This specification of mesoderm is thought to be regulated by several polypeptide growth factors. Bone morphogenetic protein (BMP), a member of the TGF-β family, is one of the regulators suggested to be involved in the formation of ventral mesoderm. In this paper, the nature of the endogenous BMP signal in dorsal–ventral specification was assessed in early Xenopus embryos using a dominant negative mutant of the Xenopus BMP receptor. In ectodermal explant assays, disruption of endogenous BMP signaling by the mutant receptor changed the competence of the explant cells to mesoderm-inducing factors, activin and basic fibroblast growth factor (bFGF), and led to formation of neural tissue without mesoderm induction. This result suggests that endogenous BMP acts as a ventral mesoderm modifier rather than a ventral mesoderm inducer, and that interactions between endogenous BMP and mesoderm-inducing factors may be important in dorsal–ventral patterning of embryonic mesoderm. In addition, the induction of neural tissue by inhibition of the BMP signaling pathway also suggests involvement of BMP in neural induction.  相似文献   

10.
Platelet-derived growth factor receptor (PDGFR) signaling is required for normal gastrulation in Xenopus laevis. Embryos deprived of PDGFR signaling develop with a range of gastrulation-specific defects including spina bifida, shortened anteroposterior axis, and reduced anterior structures. These defects arise because the involuting mesoderm fails to move appropriately. In this study, we determine that inhibition of PDGFR signaling causes prospective head mesoderm cells to appear in the blastocoel cavity at the onset of gastrulation, stage 10. These aberrant cells undergo apoptosis via the caspase 3 pathway at an embryonic checkpoint called the early gastrula transition (EGT). They are TUNEL-positive and have increased levels of caspase 3 activity compared to control embryos. Apoptotic death of these mesoderm cells can be prevented by co-injection of mRNA encoding Bcl-2 or by injection of either a general caspase inhibitor or a caspase 3-specific inhibitor. Prevention of cell death, however, is not sufficient to rescue gastrulation defects in these embryos. Based on these data, we propose that PDGFR signaling is necessary for survival of prospective head mesoderm cells, and also plays an essential role in the control of their cell movement during gastrulation.  相似文献   

11.
Mesodermal cell differentiation begins in response to an inductive interaction early in frog development. In parallel with the recent finding that certain peptide growth factors can induce mesoderm, early cellular and genetic responses to the induction have been discovered. I review here recent work on these responses, work that aims to understand how cells respond to inducers to form the complex pattern of the vertebrate mesoderm.  相似文献   

12.
XHNF1(&bgr;) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.  相似文献   

13.
14.
Quiescent Xenopus oocytes are activated by progesterone, which binds to an unidentified surface-associated receptor. Progesterone activates a poorly understood signaling pathway that results in the translational activation of mRNA encoding Mos, a MAP kinase kinase kinase necessary for the activation of MAP kinase and MPF, the resumption of meiosis, and maturation of the oocyte into the sperm-responsive egg. We have designed a screen to identify early signaling proteins based on the premise that some of these proteins would be phosphorylated or otherwise modified within minutes of progesterone addition. This screen has revealed Eg2, a Ser/Thr kinase. We find that Eg2 is phosphorylated soon after progesterone stimulation and provide evidence that it functions in the signaling pathway. Overexpression of Eg2 via mRNA microinjection shortens the time between progesterone stimulation and the appearance of new Mos protein, accelerates activation of MAP kinase and advances entry into the meiotic cell cycle. Finally, overexpression of Eg2 dramatically reduces the concentration of progesterone needed to trigger oocyte activation. These results argue that the kinase Eg2 is a component of the progesterone-activated signaling pathway that releases frog oocytes from cell cycle arrest.  相似文献   

15.
16.
17.
In vertebrates, neural induction occurs during gastrulation when ectodermal cells choose between two fates, neural and epidermal. In Xenopus, neural induction has been regarded as a default pathway as it occurs, in dorsal ectoderm, when ventralizing signals (mainly Bone Morphogenesis Proteins, BMPs, potent epidermal inducers) are inhibited by dorsalizing signals, including factors such as noggin, chordin, and follistatin. However, our previous studies demonstrated that an instructive signal triggered by the activation of L-type voltage-sensitive calcium channels, resulting in a transient increase in intracellular free calcium, appears to be a necessary and sufficient requirement to induce the competent ectoderm toward the neural pathway. Here we further explore the relationship between the Ca2+ transient signals observed and the expression of early neural genes. We have performed a subtractive approach to identify the genes which are transcribed early after the calcium signal and involved in neural determination. We have analyzed a candidate gene (xMLP) which encodes a MARCKS-like protein, a substrate for PKC. We show that this gene is activated by a calcium transient signals and induced by noggin overexpression. xMLP is expressed at the right time in presumptive neural territories. The putative role of xMLP in the process of neural induction is discussed.  相似文献   

18.
Schohl A  Fagotto F 《The EMBO journal》2003,22(13):3303-3313
Mesoderm formation results from an inducing process that requires maternal and zygotic FGF/MAPK and TGFbeta activities, while maternal activation of the Wnt/beta-catenin pathway determines the anterior-dorsal axis. Here, we show a new role of Wnt/beta-catenin signaling in mesoderm induction. We find that maternal beta-catenin signaling is not only active dorsally but also all around the equatorial region, coinciding with the prospective mesoderm. Maternal beta-catenin function is required both for expression of dorsal genes and for activation of MAPK and the mesodermal markers Xbra and eomesodermin. beta-catenin acts in a non- cell-autonomous manner upstream of zygotic FGF and nodal signals. The Wnt/beta-catenin activity in the equatorial region of the early embryo is the first example of a maternally provided mesoderm inducer restricted to the prospective mesoderm.  相似文献   

19.
Y Gotoh  N Masuyama  A Suzuki  N Ueno    E Nishida 《The EMBO journal》1995,14(11):2491-2498
Mitogen-activated protein kinase (MAPK) is activated by MAPK kinase (MAPKK) in a variety of signaling pathways. This kinase cascade has been shown to function in cell proliferation and differentiation, but its role in early vertebrate development remains to be investigated. During early vertebrate embryogenesis, the induction and patterning of mesoderm are thought to be determined by signals from intercellular factors such as members of the fibroblast growth factor (FGF) family and members of the transforming growth factor-beta family. Here we show that the microinjection of either mRNA encoding a constitutively active mutant of MAPKK or mRNA encoding a constitutively active form of STE11, a MAPKK kinase, leads to the induction of mesoderm in ectodermal explants from Xenopus embryos. Moreover, the expression of MAPK phosphatase-1 (MKP-1, also called CL100) blocks the growth factor-stimulated mesoderm induction. Furthermore, injection of CL100 mRNA into two-cell stage embryos causes severe defects in gastrulation and posterior development. The effects induced by CL100 can be rescued by co-injection of wild-type MAPK mRNA. Thus, the MAPK cascade may play a crucial role in early vertebrate embryogenesis, especially during mesoderm induction.  相似文献   

20.
Dorsal-ventral patterning is specified by signaling centers secreting antagonizing morphogens that form a signaling gradient. Yet, how morphogen gradient is translated intracellularly into fate decisions remains largely unknown. Here, we report that p38 MAPK and CREB function along the dorsal-ventral axis in mesoderm patterning. We find that the phosphorylated form of CREB (S133) is distributed in a gradient along the dorsal-ventral mesoderm axis and that the p38 MAPK pathway mediates the phosphorylation of CREB. Knockdown of CREB prevents chordin expression and mesoderm dorsalization by the Spemann organizer, whereas ectopic expression of activated CREB-VP16 chimera induces chordin expression and dorsalizes mesoderm. Expression of high levels of p38 activator, MKK6E or CREB-VP16 in embryos converts ventral mesoderm into a dorsal organizing center. p38 MAPK and CREB function downstream of maternal Wnt/β-catenin and the organizer-specific genes siamois and goosecoid. At low expression levels, MKK6E induces expression of lateral genes without inducing the expression of dorsal genes. Loss of CREB or p38 MAPK activity enables the expansion of the ventral homeobox gene vent1 into the dorsal marginal region, preventing the lateral expression of Xmyf5. Overall, these data indicate that dorsal-ventral mesoderm patterning is regulated by differential p38/CREB activities along the axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号