首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A genomic clone containing the gH2A gene, a histone variant specifically expressed in male gametic cells within the pollen of Lilium longiflorum, was isolated. Sequence analysis revealed that the coding region of the gene is interrupted by one intron, as is the case with the somatic type of plant histone H2A genes, suggesting derivation from the same ancestral gene containing one intron. In addition, a 2.8-kbp fragment of the 5′ upstream region of gH2A contained TATA and CAAT boxes, but neither a plant histone-specific regulatory DNA element nor vegetative cell-specific cis-elements were found. A histochemical study of stable transformants demonstrated that the 5′ upstream region of the gene can drive gene expression specifically in the generative cell of pollen; no activity was detectable in the vegetative cell or in other reproductive and vegetative tissues of transgenic Nicotiana tabacum. These results strongly suggest that the generative cell can direct specific gene expression, that this expression may be regulated by a putative male gametic factor, and that the gH2A promoter may therefore serve as a useful male gametic cell fate marker in angiosperms.  相似文献   

3.
We examined changes in the localization of cytoplasmic rRNA during pollen development inNicotiana tabacum SR-1. The rRNA was visualized byin situ hybridization, and the signal intensity of rRNA in microspore, vegetative and generative cell was quantified by microphotometry. The amount of rRNA per microspore or pollen section increased about 5 times from microspore to mature pollen grain and kept increasing even in the late stage of pollen development after PMI. The increase of rRNA occur in both vegetative and generative cells. The results suggest that synthesis of rRNA occur even after PM I in both vegetative and generative cells.  相似文献   

4.
5.
Ute Joos  J. van Aken  U. Kristen 《Protoplasma》1995,187(1-4):182-191
Summary Recently, we found that the anti-microtubule drugs colchicine and propham caused the absence of microtubules and thus loss of cytoplasmic zonation in in vitro growing pollen tubes ofNicotiana sylvestris, but did not seriously affect growth. In the present study we used the herbicide carbetamide as an anti-microtubule drug. It had the same effect as colchicine and propham: the cytoplasm, including the generative cell, was no longer concentrated in the tip but was distributed randomly. In addition, ultrastructural investigations have shown that even the vesicle zone, usually found at the very tip of pollen tubes, had disappeared in some tubes. Nonetheless, in vitro growth was not inhibited by more than 20% over a period of 22 h.In contrast, tube growth in plants ceased 1 cm down in the style when carbetamide was applied to the stigma before pollination. At the lowest concentration causing this effect, microtubules of the vegetative cell had disappeared and the cytoplasm was distributed randomly, as it was for in vitro grown tubes. It can be concluded that microtubules of the vegetative cell are essential for pollen tube growth in the style.Abbreviations DAPI 4,6-diamidmo-2-phenylindole - EGTA ethyleneglycerol-bis-(aminoethyl ether) tetraacetic acid - DIC differential interference contrast - GC generative cell - IC50 inhibition concentration 50% - MF microfilament - MT microtubule - PEM-buffer 50 mM PIPES 1 mM EGTA, 2 mM MgSO4, pH 6.9 - PBS phosphate buffered saline - PIPES piperazine-bis-ethanesulphonic acid - PTG-Test pollen tube growth test - SAM substrate adhesion molecule - VC vegetative cell  相似文献   

6.
Summary Fluorescence microscopy was used to visualize microtubules (Mts) and chromatin in an effort to further clarify the relationship between the generative cell (GC) and vegetative nucleus (VN) in pollen tubes of tobacco. Prominent Mt bundles are present in one or more GC extensions that can be finger-like or lamellar in form. While the VN is positioned distal to the GC in most cases, it can also straddle the cell or lie proximal to it. In all cases, however, extensions embrace, penetrate or clasp the VN. GC Mts are reorganized during the formation of the mitotic apparatus, and cell extensions are fully or partially withdrawn. By telophase in many pollen tubes, the VN shifts to a more proximal position and appears to adhere to the region of the GC containing the phragmoplast. Application of oryzalin leads to the disorganization of Mts, changes in cell shape, including the loss or alteration of cell extensions, and separation of the GC and VN in some cases. However, the position and polarity of the VN is maintained in most pollen tubes. The results indicate that GC Mts and cell extensions play a role in the association with the VN. However, the relationship appears to be controlled by other factors as well. Attention should now be directed at potential interactions involving the VN envelope, vegetative plasma membrane, GC plasma membrane and extracellular matrix.Abbreviations GC Generative cell - MGU male germ unit - Mt microtubule - VN vegetative nucleus  相似文献   

7.
Summary Shortly before and during division, the generative cell of barley (Hordeum vulgare L.) is located near the vegetative nucleus, in the peripheral layer of the highly vacuolated vegetative cell at the aperture pole. This position is also characteristic of the two resulting sperm cells. Conventional mitosis of the generative cell is followed by cytokinesis through cell plate formation. Just after division, the two sperm cells are enclosed together within a common inner vegetative cell plasma membrane, and they gradually separate from each other only during pollen maturation. The space between the generative or sperm cell plasma membrane and the vegetative cell plasma membrane is very thin and appears to be devoid of a cell wall. Both the generative cell and the young sperm cells contain a normal set of organelles; plastids devoid of starch are only sporadically observed. Our data indicate that in Hordeum vulgare the generative cell divides after migrating inside the pollen grain. This follows the pattern of development well established for several species with tricellular pollen.  相似文献   

8.
Summary InMagnolia ×soulangeana pollen grains the generative cell (GC) does not become totally free within the vegetative cell (VC), at least until the pollen tube emergence. Due to a deviation in its detachment process from the sporoderm, the opposing ends of the VC plasmalemma do not fuse themselves when the GC moves away from the intine. Consequently, the interplasmalemmic space surrounding the GC does not become isolated but rather maintains continuity with the sporoderm through a complex formation that we have called plasmalemmic cord. The real existence of this formation was confirmed through serial sectioning showing the plasmalemmic cord to consist of the VC plasmalemma. In its initial portion it is occupied by a reasonably accentuated wall ingrowth of the inner layer of the intine (intine 3). In the remainder portion, neither of the cytochemical tests used in this work have revealed the presence of a significant amount of wall material. However, ultrathin sections of samples processed either chemically or by cryofixation showed the existence of an intricate system of tubules and vesicles, some of which are evaginations of the VC plasmalemma. The hypothesis that the plasmalemmic cord may have a role in the complex interactions between the two pollen cells is discussed.  相似文献   

9.
Summary Both the internal anatomy and the external morphology of the mature pollen grain of Aloe ciliaris have been studied, together with the cytological changes occurring during pollen activation. In mature pollen, the generative cell (GC) and the vegetative nucleus (VN) are closely associated with each other, and both can be found in the central part of the grain. In the generative cytoplasm, some organelles and microtubular bundles are present. In the vegetative cell, dictyosomes, stacks of rough endoplasmic reticulum, mitochondria, plastids, vacuoles, ribosomes, and masses of fibrillar material have been described. During pollen activation, important changes occur in both the generative and vegetative cells (VC). In the GC, the microtubular bundles become clearly visible, and the GC and VC gradually move towards the germ pore. The RER cisterns become free from the stacks, and organelles, such as dictyosomes, become very active. The fibrillar masses gradually decrease in number, and the individual fibrils become more evident and clearer in resolution.This research was carried out in the framework of contract no. BAP-0204-I of the Biotechnology Action Programme of the Commission of the European Communities  相似文献   

10.
The ultrastructure of the generative cell (GC) wall complex in germinating pear (Pyrus communis L.) pollen was studied with the aim of identifying features that may shed light on the mechanism of uptake of substances by the GC from its host, the vegetative cell (VC). The techniques of rapid freeze-fixation and freeze-substitution, serial sectioning, and conventional and intermediate-voltage transmission electron microscopy were employed. The wall complex consisted of two plasma membranes (PMs), one derived from the GC and the other from the VC. A nonfibrillar wall material occurred in the space between the two PMs. Plasmodesmata could not be identified in this wall complex. However, in localized areas the wall complex formed processes that protruded into the VC cytoplasm. In other areas, the wall complex showed certain cup-shaped invaginations. Certain double membrane bound multivesicular bodies occurred in the GC cytoplasm; their morphological characteristics indicated that they may have been derived from the GC wall complex. The data indicate that in pear the GC surface is amplified by wall processes, presumably to perform a role analogous to transfer cells.  相似文献   

11.
The effects on anther development of a fusion of the Arabidopsis anther-specific apg gene promoter to a ribonuclease (barnase) in transgenic tobacco plants were examined. Contrary to expectations, viable pollen grains were produced by these plants despite the demonstration that ribonuclease expression in the microspores and tapetum caused targeted cell ablation. Transformed plants were reduced in male fertility due to ablation of a proportion of pollen dependent on apg-barnase locus number. Plants were otherwise phenotypically normal and fully female fertile, confirming the anther-specific nature of the apg promoter. In microspores inheriting an apg-barnase locus following meiosis, loss of cell viability, as judged by fluorescein diacetate staining, occurred during mid to late microspore development. Microspores not inheriting a transgene went on to mature into viable pollen grains. Premature degeneration of the tapetum was also observed as a result of apg-barnase expression, but this did not appear to disrupt the subsequent microspore and pollen developmental programmes. This was substantiated by observations of microspore development in plants in which the tapetum was rescued from ablation by crossing in a second transgene encoding a tapetum-specific inhibitor of the ribonuclease. It was determined that tapetum cell disruption occurs at the early to mid uninucleate microspore stage in apg-barnase transformants. The data presented show that after this point in microspore development the tapetum is no longer essential for the production of viable pollen in tobacco.  相似文献   

12.
M. Cresti  M. Murgia  C. H. Theunis 《Protoplasma》1990,154(2-3):151-156
Summary Microtubules tightly cross-linked into bundles are described in the sperm cells ofBrassica oleracea pollen tubes. The sperm cells are lobed and tailed and the microtubule bundles are often located in these parts of the cells. In the present paper we suggest that the cross-linked microtubule organization could determine an intertubular sliding, probably generating a motility system that propels the sperm cells through the tube.Abbreviations GC generative cell - Mfs microfilaments - Mts microtubules - SC sperm cell - VC vegetative cell - VN vegetative nucleus  相似文献   

13.
In pollen grains of Convallaria majalis the outer membrane of the generative cell (GC) is the inner membrane of the vegetative cell (VC). Striped projections (SP) at the cytoplasmic face of the outer membrane of the GC were revealed by chemical fixation and also by a rapid freeze-fixation and freeze-substitution. The projections, located in groups on the protruding lobes of the GC, were arranged parallel to each other and were equally spaced (40 nm apart). The length of the SP, estimated from grazing sections of GC, was 400 nm. Each projection was composed of T-shaped elements, about 35 nm high, spaced at an average distance of 25 nm. SP were observed in mature, hydrated, activated and germinated pollen grains and seemed to be associated with microtubules and microfilaments of the VC. No evidence exists yet of SP on the sperm cell membrane. Immunogold labelling with anti-myosin antibodies showed many gold particles attached preferentially to the surface of the protruding lobes of the GC in the area of the projections. These results may suggest that the SP of Convallaria GC contain myosin-like protein and play an important role in the motility of the GC during pollen tube growth.  相似文献   

14.
Summary Our investigations on Canna indica L. indicate that the pollen of this species is polymorphic: there are two types of pollen — a larger type and a comparatively smaller type. Transmission electron microscopy (TEM) revealed the presence of small vacuoles containing tannic substances in the generative cell (GC) of the larger grains: the GC of the mature grain contained a higher quantity of tannins than the GC of the immature grain. Mitochondria, lipid bodies, rough endoplasmic reticulum (RER) and microtubular bundles were present in the cytoplasm of the GC. Numerous mitochondria, lipid bodies and plastids were also present in the vegetative cell (VC), with the mitochondria clustered around the vegetative nucleus. The plastids were observed to be associated with the RER cisterns. During the maturation process, the number of starch grains contained in the plastids decreased.  相似文献   

15.
Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.Abbreviations CLSM confocal laser scanning microscopy - EM electron microscopy - GC generative cell - GN generative nucleus - MT microtubule - SC sperm cell - SN sperm nucleus - VN vegetative nucleus  相似文献   

16.
To examine the site of expression of the tomato anther-specific gene, LAT52, in the developing male gametophyte, the LAT52 gene promoter was fused to a nuclear-targeted version of the β-glucuronidase (GUS) gene and introduced into tobacco. Transformed plants expressing GUS activity showed nuclear localization of the GUS reaction product to the vegetative cell of the pollen grain. No staining or localization was detected in the generative cell, at pollen maturation or during pollen tube growth in vitro. These results clearly demonstrate differential gene expression within the male gametophyte, and highlight regulatory events which determine the differing fates of the vegetative and generative cells following microspore mitosis.  相似文献   

17.
The vegetative nucleus (VN) of Nicotiana tabacum L. has been qualitatively and quantitatively studied in fresh, hydrated, and activated pollen. Techniques included the use of optical sectioning by confocal scanning laser microscopy to obtain volume and surface area measurements, and stereoscopic pairs; and freeze-etch electron microscopy to estimate the frequency of nuclear pores per m2 in the vegetative nucleus. Several morphological changes were observed to occur in pollen grain nuclei during the early processes of tube growth. In freshly dehisced pollen grain, the vegetative and generative nuclei were side by side, but following hydration and activation of the grain, the elongated generative nucleus became partially surrounded by the vegetative nucleus. It was found that during hydration, the surface area of the vegetative nucleus increased and there was a decrease in the frequency of nuclear pores. The calculated total number of pores remained similar. After activation and pollen-tube growth, the vegetative nucleus retained the same surface area as in the hydrated state but the frequency of nuclear pores decreased; therefore, the calculated total number of pores was significantly lowered. When considered alongside complementary biochemical data, these morphological results indicate that RNA production in the vegetative nucleus decreases following germination.Abbreviations VN vegetative nucleus (nuclei) - GN generativenucleus - GC generative cell - CSLM confocal scanning laser microscope We acknowledge research support by the Biotechnology Action Programm of the Commission of European Communities, and CNR for the fellowship awarded to Dr. Wagner. We would also like to thank Mrs. C. Faleri for the expert technical help.  相似文献   

18.
The organization of the microtubule (Mt) cytoskeleton during mitosis and cytokinesis of the generative cell (GC) in Ornithogalum virens L. (bicellular pollen type, chromosome number, n = 3) from prophase to telophase/sperm formation was investigated by localization of -tubulin immunofluorescence using a conventional fluorescence microscope and a confocal laser scanning microscope. Chromosomes were visualized with DNA-binding fluorochrome dyes (ethidium bromide and 46-diamino-2-phenyl-indole). The GC of O. virens is characterized by G2/M transition within the pollen grain and not in the pollen tube as occurs in the majority of species with bicellular pollen. It was found that prophase in the GC starts before anthesis and prometaphase takes place after 10 min of pollen germination. The prophase Mts are organized into three prominent bundles, located near the generative nucleus. The number of these Mt bundles is the same as the number of GC chromosomes, a relation which has not previously been considered in other species. The most evident feature in the prophase/ prometaphase transition of O. virens GC is a direct rapid rearrangement of Mt bundles into a network which appears to interact with kinetochores and form a typical prometaphase Mt organization. The metaphase chromosomes are arranged into a conventional equatorial plate, and not in tandem as is thought to be characteristic of GC metaphase. The metaphase spindle consists of kinetochore fibres and a few interzonal fibres which form dispersed poles. Anaphase is characterized by a significant elongation of the mitotic spindle concomitant with the extension of the distance between the opposite poles. At anaphase the diffuse poles converge. Cytokinesis is realized by cell plate formation in the equatorial plane of the GC. The phragmoplast Mts between two future sperm nuclei appear after Mts of the mitotic spindle have disappeared.Abbreviations DAPI 46-diamino-2-phenyl-indole - GC generative cell - GN generative nucleus - Mt microtubule This research was made possible in part due to TEMPUS Programme and Global Network for Cell and Molecular Biology UNESCO grants to Magorzata Bana. The experimental part of the work was done in Siena University. M. Banas is very grateful to Prof. Mauro Cresti and his group for scientific interest, offering the excellent laboratory facilities, and kind reception.  相似文献   

19.
Summary The microtubular cytoskeleton of the generative cell (GC) ofHyacinthus orientalis has been studied until the formation of the sperm cells (SCs). Immunofluorescence procedures in combination with confocal laser scanning microscopy (CLSM) has enabled the visualization of the organization of the microtubular cytoskeleton. Chemical fixation and freeze-fixation electron microscopy have been used to investigate the cytoskeleton and the ultrastructural organization of the GC and SCs. During pollen activation the GC is spindle-shaped. Microtubules (MTs) are organized as bundles and distributed in proximity of the GC plasmamembrane, forming a basket-like structure. Following migration through the pollen tube, the basket-like structure becomes more intertwined. During the nuclear division the MTs are involved in the segregation of the chromosomes and kinetochores are clearly discernible. Association with organelles is also observed. The chromosomes of the GC remain condensed until they separate in two sperm nuclei. The pre-prophase band was never observed. At the end of the GC division the microtubular network reorganizes in the two SCs.Abbreviations CLSM confocal laser scanning microscopy - DAPI 46-diamidino-2-phenyl-indole - F-S freeze-substitution - GC generative cell - MT microtubule - PBS phosphate buffered saline - R-F rapid freeze-fixation - SC sperm cell - TBS tris buffered saline - VN vegetative nucleus  相似文献   

20.
Isolated microspores and pollen suspension of Brassica napus “Topas” cultured in NLN-13 medium at 18°C follow gametophytic pathway and develop into pollen grains closely resembling pollen formed in planta. This culture system complemented with whole-mount immunocytochemical technology and novel confocal laser scanning optical technique enables detailed studies of male gametophyte including asymmetric division, cytoskeleton, and nuclear movements. Microtubular cytoskeleton configurationally changed in successive stages of pollen development. The most prominent role of microtubules (MTs) was observed just before and during nuclear migration at the early and mid-bi-cellular stage. At the early bi-cellular stage, parallel arrangement of cortical and endoplasmic MTs to the long axis of the generative cell (GC) as well as MTs within GC under the plasmalemma bordering vegetative cell (VC) were responsible for GC lens shape. At the beginning of the GC migration, endoplasmic microtubules (EMTs) of the VC radiated from the nuclear envelope. Most cortical and EMTs of the VC were found near the sporoderm. At the same time, pattern of MTs observed in GC was considerably different. Multiple EMTs of the GC, previously parallel aligned, reorganized, and start to surround GC, forming a basket-like structure. These results suggest that EMTs of GC provoke changes in GC shape, its detachment from the sporoderm, and play an important role in GC migration to the vegetative nucleus (VN). During the process of migration of the GC to the VC, multiple and thick bundles of MTs, radiating from the cytoplasm near GC plasma membrane, arranged perpendicular to the narrow end of the GC and organized into a “comet-tail” form. These GC “tail” MTs became shortened and the generative nucleus (GN) took a ball shape. The dynamic changes of MTs accompanied polarized distribution pattern of mitochondria and endoplasmic reticulum. In order to confirm the role of MTs in pollen development, a “whole-mount” immunodetection technique and confocal laser-scanning microscopy was essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号