首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that ribosomal protein S19 (RP S19) polymer, when crosslinked between Lys122 and Gln137 by activated coagulation factor XIII, acts as a C5a receptor (C5aR) antagonist/agonist. Based on experimental data obtained using RP S19 analog peptide and recombinant protein monomer, we suggested that L131DR, I134AGQVAAAN and K143KH moieties in the RP S19 C‐terminus act in, respectively, C5aR binding, penetration of the plasma membrane, and interaction with either an apoptosis-inducing molecule in neutrophils (delta lactoferrin) or a calcium channel-activating molecule (annexin A3) to induce the p38 MAPK pathway in macrophages. Recently, we observed RP S19 trimer in serum. To study the effects of this RP S19 trimer on C5aR, we prepared mutant RP S19 C‐terminal peptide (RP S19122-145) dimer and trimer, and examined their chemotactic activities and signal transduction pathways in human C5aR-overexpressing squamous cell carcinoma HSC-1 (HSC-1C5aR) cells using 24 trans-well chamber and western blotting assays, respectively. HSC-1C5aR cells were attracted by RP S19122-145 dimer and vice versa by RP S19122-145 trimer. The RP S19122-145 dimer-induced attraction was competitively blocked by pre-treatment with RP S19122-145 trimer. Moreover, RP S19122-145 trimer-induced p38 MAPK phosphorylation was stronger than RP S19122-145 dimer-induced p38 MAPK phosphorylation. RP S19122-145 trimer appeared to act as a C5aR antagonist. The agonistic and antagonistic effects of RP S19122-145 dimers and trimers were reflected by monocytic, THP-1-derived macrophage-like cells. Unlike the C5aR agonist C5a, which acts at the inflammation phase of acute inflammation, RP S19 trimer might act as a C5aR antagonist at the resolution phase.  相似文献   

2.
C-terminus of S19 ribosomal protein (RP S19) endows the cross-linked homodimer with a dual effect on the C5a receptor in leucocyte chemoattraction; agonistic effect on the monocyte receptor, and antagonistic effect on the neutrophil receptor. C5a exhibits the uniform agonistic effect on this receptor of both cell types. We have currently prepared a recombinant C5a-chimeric protein bearing the C-terminus of RP S19 (C5a/RP S19 chimera) to be used as a substitute of the RP S19 dimer. In vitro, this chimera similarly inhibited the intracellular Ca(2+) mobilization of neutrophils induced by C5a to the RP S19 dimer did. In the guinea pig skin, 10(-7) M C5a/RP S19 chimera exhibited an inhibitory capacity to the neutrophil infiltration induced by 3 x 10(-7) M C5a without enhancing monocyte infiltration. In reverse passive Arthus reaction, the neutrophil infiltration associated with plasma extravasation was significantly reduced by the simultaneous administration of 10(-7) M C5a/RP S19 chimera with antibodies. The C5a/RP S19 chimera is a useful tool not only to examine the molecular mechanism that underlies the functional difference of the C5a receptor between monocytes and neutrophils, but also to prevent C5a-mediated hyper-response of neutrophils in acute inflammation.  相似文献   

3.
Ribosomal protein S19 (RP S19) oligomers have been discovered as the first chemoattractant of migrating monocytes/macrophages to apoptotic cells via the C5a receptor (C5aR). In contrast to C5a, a fusion of the C-terminus (I(134)-H(145)) of RP S19 to C5a, the C5a/RP S19 chimera, substitutes for the RP S19 oligomers and is able to replicate C5aR antagonist-induced and agonist-induced dual effects on neutrophil and monocyte chemotactic responses, respectively. We recently discovered a gain of binding affinity when the I(134)-H(145) inhibited the activation of neutrophil C5aR-mediated chemotactic pathways. However, the opposing ligand-dependent chemotactic mechanisms are not fully understood. In this study, a loss of this additional binding affinity appeared to cause the monocyte C5aR to activate an alternative signalling pathway. The p38 mitogen activated-protein kinase (MAPK) pathway was linked to cell migration rather than a classical extracellular-regulated kinase 1/2 pathway commonly used by C5a. C5aR internalization was not involved in the alternative chemotactic pathway. We propose a model of activation involving a C5aR co-molecule that interferes with the C5aR-Gi protein interaction upon binding to the I(134)-H(145) in neutrophils; however, a free I(134)-H(145) from the C5aR co-molecule can guide the alternative activation of the chemotactic p38MAPK pathway in monocytes/macrophages.  相似文献   

4.
To analyze the role of S19 ribosomal protein (RP S19) in apoptosis, murine NIH3T3 were transfected with either hemagglutinin peptide-tagged (HA) wild-type human RP S19 or a mutant (Gln137Asn) that is resistant to transglutaminase-catalyzed cross-linked-dimerization. Transfection with the mutant HA-RP S19 inhibited manganese (II) (Mn II)-induced apoptosis whereas the wild-type HA-RP S19 augmented apoptosis and a mock transfection had no effect. Release of the wild-type HA-RP S19 dimer but not the mutant HA-RP S19 was observed during the apoptosis. The reduced rate of apoptosis of the cells transfected with the mutant HA-RP S19 was overcome by addition of extracellular wild-type RP S19 dimer. The apoptosis rates in cells transfected with either form of human HA-RP S19 and in mock transfectants were reduced to about 40% by the presence of anti-RP S19 antibody in the culture medium. Immunofluorescence staining and fluorescence-activated cell sorting (FACS) analysis showed that the cell surface expression of the receptor for cross-linked RP S19 dimer, C5a receptor, increased during apoptosis, concomitant with phosphatidylserine exposure. The expression of the C5a receptor gene also increased twofold. Apoptosis rates in the transfected and control cell lines were also reduced by the presence of an anti-mouse C5a receptor monoclonal antibody or of a peptide C5a receptor antagonist. These results indicated the presence of an RP S19 dimer- and C5a receptor-mediated autocrine-type augmentation mechanism during Mn II-induced apoptosis in the mouse fibroblastic cell line. In contrast to the RP S19 dimer, C5a actually inhibited apoptosis, suggesting that signaling through the C5a receptor varies depending on the ligand bound.  相似文献   

5.
Abstract: A portion of the neurofibrillary tangles of Alzheimer's disease has the characteristics of cross-linked protein. Because the principal component of these lesions is the microtubule-associated protein tau, and because a major source of cross-linking activity within neurons is supplied by tissue transglutaminase (TGase), it has been postulated that isopeptide bond formation is a major posttranslational modification leading to the formation of insoluble neurofibrillary tangles. Here we have mapped the sites on two isoforms of human tau protein (τ23 and τ40) capable of participating in human TGase-mediated isopeptide bond formation. Using dansyl-labeled fluorescent probes, it was shown that eight Gln residues can function as amine acceptor residues, with two major sites being Gln351 and Gln424. In addition, 10 Lys residues were identified as amine donors, most of which are clustered adjacent to the microtubule-binding repeats of tau in regions known to be solvent accessible in filamentous tau. The distribution of amine donors correlated closely with that of Arg residues, suggesting a link between neighboring positive charge and the TGase selectivity for donor sites in the protein substrate. Apart from revealing the sites that can be cross-linked during the TGase-catalyzed assembly of tau filaments, the results suggest a topography for the tau monomers so assembled.  相似文献   

6.
Transglutaminase type 1 was identified as a tyrosine-phosphorylated protein from the isolated junctional fraction of the mouse liver. This enzyme was reported to be involved in the covalent cross-linking of proteins in keratinocytes, but its expression and activity in other cell types have not been examined. Northern blotting revealed that transglutaminase type 1 was expressed in large amounts in epithelial tissues (lung, liver, and kidney), which was also confirmed by immunoblotting with antibodies raised against mouse recombinant protein. Immunoblotting of the isolated junctional fraction revealed that transglutaminase type 1 was concentrated in the fraction not only as a 97-kDa form but also as forms of various molecular masses cross-linked to other proteins. In agreement with this finding, endogenous transglutaminase type 1 was immunofluorescently colocalized with E-cadherin in cultured simple epithelial cells. In the liver and kidney, immunoelectron microscopy revealed that transglutaminase type 1 was concentrated, albeit not exclusively, at cadherin-based adherens junctions. Furthermore, by in vitro and in vivo labeling, transglutaminase cross-linking activity was also shown to be concentrated at intercellular junctions of simple epithelial cells. These findings suggested that the formation of covalently cross-linked multimolecular complexes by transglutaminase type 1 is an important mechanism for maintenance of the structural integrity of simple epithelial cells, especially at cadherin-based adherens junctions.  相似文献   

7.
Physicochemical characteristics of monocyte chemotactic activity in the culture fluid of PHA-stimulated human mononuclear leukocytes (MNL) were investigated. Among several chemotactic activity peaks eluted from a TSK-2000 gel filtration column, one peak, corresponding to a molecular mass of 17 kDa, accounted for about 40% of total chemotactic activity. On a chromatofocusing column, most of the 17-kDa activity eluted in a pH range of 9.4 to 7.9. It could bind to Orange-A Sepharose. These three characteristics--molecular mass, basic isoelectric point, and dye column binding--were similar to those of human glioma-derived monocyte chemotactic factor (GDCF), recently purified in our laboratory. Therefore, the MNL-derived chemoattractant was purified by the same procedures used for purification of GDCF, namely Orange-A Sepharose chromatography, carboxymethyl (CM)-HPLC, and reverse phase (RP) HPLC. About 50% of the culture fluid chemotactic activity bound to Orange-A Sepharose and was eluted in a single peak by a NaCl gradient. The active pool from the Orange-A column was separated into two sharp peaks by CM-HPLC, each of which eluted at identical acetonitrile concentrations from a RP HPLC column. By SDS-PAGE, the peptides had apparent molecular masses of 15 and 13 kDa and appeared homogeneous. Amino acid analysis showed that the composition of the two peptides was almost identical; and the N terminus of each peptide was apparently blocked. Shared characteristics of these peptides and the GDCF peptides include identical elution patterns from CM- and RP HPLC columns, identical SDS-PAGE migration, almost identical amino acid composition, and blocked N terminus. This suggests that the monocyte attractants isolated from culture fluid of PHA-stimulated MNL are identical to those derived from human glioma cells.  相似文献   

8.
A novel strategy for site-specific immobilization of recombinant proteins was investigated using microbial transglutaminase (MTG). Alkaline phosphatase (AP) was selected as a model protein and tagged with a short peptide (MKHKGS) at the N-terminus to provide a reactive Lys residue for MTG. On the other hand, casein, a well-known substrate for MTG, was chemically attached onto a polyacrylic resin to provide reactive Gln residues for the enzymatic immobilization of the recombinant AP. As a result, we succeeded in MTG-mediated functional immobilization of the recombinant AP onto casein-coated polyacrylic resin. It was found that the immobilized AP prepared using MTG exhibited much higher specific activity than that prepared by chemical modification. Moreover, enzymatic immobilization gave an immobilized formulation with higher stability upon repeated use than that obtained by physical adsorption. Use of this ability of MTG in posttranslational protein modification will provide us with a benign, site-specific immobilization method for functional proteins.  相似文献   

9.
Blood coagulation or plasma clotting caused generation of a monocyte chemotactic factor(s) in vitro. The chemotactic factor, of which the apparent molecular mass was 75 kDa, shared antigenicity with complement C5 and possessed the affinity to monocytes, but not to polymorphonuclear leukocytes. The generation of the chemotactic factor was hindered in the presence of a thiol enzyme inhibitor, p-chloromercuriphenyl sulfonic acid, at the concentration of 1 mmol/l, although the gelation of plasma was apparently completed. Furthermore, the generation of chemotactic factor was not observed when a plasma deficient in blood coagulation factor XIII, which is a precursor of a thiol enzyme, plasma transglutaminase, was used; and the activity normally appeared when the deficient plasma was reconstituted with purified factor XIII or with a tissue transglutaminase prior to clotting. When the human sera were injected into guinea pig skin, the serum derived from normal plasma or from the reconstituted factor XIII deficient one caused mononuclear cell infiltration, however, the serum from the deficient plasma without reconstitution infiltrated to a significantly smaller extent. These results indicated that the complement system was initiated somehow during the clotting process resulting in the generation of the C5-derived monocyte chemotactic factor in cooperation with factor XIIIa (activated factor XIII).  相似文献   

10.
Histidine-tagged green fluorescent protein (His(6)-Xpress-GFP), a widely used fluorescent probe, was found to be a good substrate for transglutaminase, an enzyme that catalyzes covalent crosslinking of proteins. GFP alone did not serve as a substrate but its derivative His(6)-Xpress-GFP was readily crosslinked through the Gln and Lys residues present in the short N-terminal extension (His(6)-Xpress). His(6)-Xpress-GFP was sensitive enough to detect the transglutaminase activity in guinea pig liver homogenates. The fluorescent substrate could also be used for activity staining of transglutaminase on histological tissue sections, and such applications revealed a surprisingly wide distribution of transglutaminase in the body, especially in the extracellular matrices of various tissues, suggesting an important role for transglutaminase in maintaining the integrity of the extracellular matrix and connective tissues by crosslinking its constituent proteins.(J Histochem Cytochem 49:247-258, 2001)  相似文献   

11.
The ATPase inhibitor is a regulatory subunit of mitochondrial ATP synthase. In this study, the role of Lys19 of the yeast ATPase inhibitor was examined by site-directed mutagenesis. Two amino acids (Gln and Glu) were substituted for the Lys19. The purified mutant inhibitor (Lys19-->Gln) had similar ATPase inhibitory activity to that of the wild-type inhibitor at pH 6.5, but was less active at pH 7.4. ATP synthesis in mutant mitochondria was normally activated by the addition of ADP and succinate, but the inactivated ATPase complex in the mutant mitochondria was activated more readily than that in control cells by raising pH. These results show that Lys19 of the yeast ATPase inhibitor is not essential for ATPase inhibitory activity, but increases the stability of the inhibitor-F1Fo complex at higher pH.  相似文献   

12.
We have found that ribonuclease S-peptide can work as a novel peptidyl substrate in protein cross-linking reactions catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Enhanced green fluorescent protein tethered to S-peptide at its N-terminus (S-tag-EGFP) appeared to be efficiently cross-linked by MTG. As wild-type EGFP was not susceptible to cross-linking, the S-peptide moiety is likely to be responsible for the cross-linking. A site-directed mutation study assigned Gln15 in the S-peptide sequence as the sole acyl donor. Mass spectrometric analysis showed that two Lys residues (Lys5 and Lys11) in the S-peptide sequence functioned as acyl acceptors. We also succeeded in direct monitoring of the cross-linking process by virtue of fluorescence resonance energy transfer (FRET) between S-tag-EGFP and its blue fluorescent color variant (S-tag-EBFP). The protein cross-linking was tunable by either engineering S-peptide sequence or capping the S-peptide moiety with S-protein, the partner protein of S-peptide for the formation of ribonuclease A. The latter indicates that S-protein can be used as a specific inhibitor of S-peptide-directed protein cross-linking by MTG. The controllable protein cross-linking of S-peptide as a potent substrate of MTG will shed new light on biomolecule conjugation.  相似文献   

13.
Tissue transglutaminase is a unique member of the transglutaminase family as it not only catalyzes a transamidating reaction, but also binds and hydrolyzes GTP and ATP. Tissue transglutaminase has been reported to be pro-apoptotic, however, conclusive evidence is still lacking. To elucidate the role of tissue transglutaminase in the apoptotic process human neuroblastoma SH-SY5Y cells were stably transfected with vector only (SH/pcDNA), wild-type tissue transglutaminase (SH/tTG) and tissue transglutaminase that has no transamidating activity but retains its other functions (SH/C277S). In these studies three different apoptotic stimuli were used osmotic stress, staurosporine treatment and heat shock to delineate the role of tissue transglutaminase as a transamidating enzyme in the apoptotic process. In SH/tTG cells, osmotic stress and staurosporine treatments resulted in significantly greater caspase-3 activation and apoptotic nuclear changes then in SH/pcDNA or SH/C277S cells. This potentiation of apoptosis in SH/tTG cells was concomitant with a significant increase in the in situ transamidating activity of tissue transglutaminase. However, in the heat shock paradigm, which did not result in any increase in the transamidating activity in SH/tTG cells, there was a significant attenuation of caspase-3 activity, LDH release and apoptotic chromatin condensation in SH/tTG and SH/C277S cells compared with SH/pcDNA cells. These findings indicate for the first time that the effect of tissue transglutaminase on the apoptotic process is highly dependent on the type of the stimuli and how the transamidating activity of the enzyme is affected. Tissue transglutaminase facilitates apoptosis in response to stressors that result in an increase in the transamidating activity of the enzyme. However, when the stressors do not result in an increase in the transamidating activity of tissue transglutaminase, than tissue transglutaminase can ameliorate the apoptotic response through a mechanism that is independent of its transamidating function. Further, neither the phosphatidylinositol-3-kinase pathway nor the extracellular-regulated kinase pathway is downstream of the modulatory effects of wild-type tissue transglutaminase or C277S-tissue transglutaminase in the apoptotic cascade.  相似文献   

14.
The alpha-aminoadipate pathway for lysine biosynthesis is present only in fungi. The alpha-aminoadipate reductase (AAR) of this pathway catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde by a complex mechanism involving two gene products, Lys2p and Lys5p. The LYS2 and LYS5 genes encode, respectively, a 155-kDa inactive AAR and a 30-kDa phosphopantetheinyl transferase (PPTase) which transfers a phosphopantetheinyl group from coenzyme A (CoA) to Lys2p for the activation of Lys2p and AAR activity. In the present investigation, we have confirmed the posttranslational activation of the 150-kDa Lys2p of Candida albicans, a pathogenic yeast, in the presence of CoA and C. albicans lys2 mutant (CLD2) extract as a source of PPTase (Lys5p). The recombinant Lys2p or CLD2 mutant extract exhibited no AAR activity with or without CoA. However, the recombinant 150-kDa Lys2p, when incubated with CLD2 extract and CoA, exhibited significant AAR activity compared to that of wild-type C. albicans CAI4 extract. The PPTase in the CLD2 extract was required only for the activation of Lys2p and not for AAR reaction. Site-directed mutational analysis of G882 and S884 of the Lys2p activation domain (LGGHSI) revealed no AAR activity, indicating that these two amino acids are essential for the activation. Replacement of other amino acid residues in the domain resulted in partial or full AAR activity. These results demonstrate the posttranslational activation and the requirement of specific amino acid residues in the activation domain of the AAR of C. albicans.  相似文献   

15.
Factor XIIIa-catalyzed ε-(γ-glutamyl)-lysyl bonds between glutamine and lysine residues on fibrin α and γ chains stabilize the fibrin clot and protect it from mechanical and proteolytic damage. The cross-linking of γ chains is known to involve the reciprocal linkages between Gln(398) and Lys(406). In α chains, however, the respective lysine and glutamine partners remain largely unknown. Traditional biochemical approaches have only identified the possible lysine donor and glutamine acceptor sites but have failed to define the respective relationships between them. Here, a differential mass spectrometry method was implemented to characterize cross-linked α chain peptides originating from native fibrin. Tryptic digests of fibrin that underwent differential cross-linking conditions were analyzed by high resolution Fourier transform mass spectrometry. Differential intensities associated with monoisotopic masses of cross-linked peptides were selected for further characterization. A fit-for-purpose algorithm was developed to assign cross-linked peptide pairs of fibrin α chains to the monoisotopic masses relying on accurate mass measurement as the primary criterion for identification. Equipped with hypothesized sequences, tandem mass spectrometry was then used to confirm the identities of the cross-linked peptides. In addition to the reciprocal cross-links between Gln(398) and Lys(406) on the γ chains of fibrin (the positive control of the study), nine specific cross-links (Gln(223)-Lys(508), Gln(223)-Lys(539), Gln(237)-Lys(418), Gln(237)-Lys(508), Gln(237)-Lys(539), Gln(237)-Lys(556), Gln(366)-Lys(539), Gln(563)-Lys(539), and Gln(563)-Lys(601)) on the α chains of fibrin were newly identified. These findings provide novel structural details with respect to the α chain cross-linking compared with earlier efforts.  相似文献   

16.
Contact sites between the corticotropin-releasing factor receptor type 1 (CRFR1), the sauvagine (SVG) radioligands [Tyr(0),Gln(1)]SVG ((125)I-YQS) and [Tyr(0),Gln(1), Leu(17)]SVG ((125)I-YQLS) were examined. (125)I-YQLS or (125)I-YQS was cross-linked to CRFR1 using the chemical cross-linker, disuccinimidyl suberate (DSS), which cross-links the epsilon amino groups of lysine residues that have a molecular distance of 11.4 A. DSS specifically and efficiently cross-linked (125)I-YQLS and (125)I-YQS to CRFR1. CRFR1 contains 5 putative extracellular lysine residues (Lys(110), Lys(111), Lys(113), Lys(257), and Lys(262)) that can cross-link to the 4 lysine residues (Lys(16), Lys(22), Lys(25), and Lys(27)) of the radioligands. Identification of the CNBr-cleaved fragments of CRFR1 cross-linked to (125)I-YQLS or (125)I-YQS established that the second extracellular loop of CRFR1 cross-links to Lys(16) of YQS. Additionally, site-directed mutagenesis (changing Lys to Arg in CRFR1 individually and in combination) revealed that Lys(257) in the second extracellular loop of CRFR1 is an important cross-linking site. In conclusion, it was shown that in SVG-bound CRFR1, Lys(257) of CRFR1 lies in close proximity (11.4 A) to Lys(16) of SVG.  相似文献   

17.
A new methodology for the preparation of enzyme-labeled protein polymers bearing pendent haptens was developed through the combination of chemical modification and posttranslational protein modification catalyzed by microbial transglutaminase (MTG). As a model hapten, trinitrobenzene (TNB) was chosen and chemically conjugated with the accessible Lys residues of beta-casein. The resultant trinitrophenylated beta-casein was further modified with formaldehyde to render the residual Lys residues inert toward self-cross-linking by MTG. Escherichia coli alkaline phosphatase (AP), comprising a specific peptide tag carrying a MTG-reactive Lys residue, was then conjugated to the Gln residues in beta-casein-TNB conjugates. The resultant AP-labeled beta-casein-bearing pendent TNB moieties (AP-betaCT) showed comparable specific activity with native AP. It was found that only the AP-betaCT with a sufficient number of pendent TNBs are capable of binding to a surface adsorbed with anti-TNP and anti-TNT antibodies, indicating the presence of polyvalent interactions. The utility of AP-betaCT was demonstrated by competitive immunoassays for trinitrophenol (TNP) and trinitrotoluene (TNT), with detection limits of 0.99 microg/L and 0.18 microg/L, respectively. The present study demonstrates the potential of dual labeling of protein scaffolds by chemical and enzymatic protein manipulation to create a new proteinaceous architecture.  相似文献   

18.
In cultured mouse epidermal basal cells, retinoic acid is a potent inducer of transglutaminase, the enzyme responsible for isodipeptide bond formation in protein cross-linking in the production of the cornified membrane during terminal differentiation. Paradoxically retinoic acid also inhibits the formation of the cross-linked envelope and greatly reduces the level of dipeptide bond formation in epidermal cells induced to differentiate by calcium. These results suggest a novel mechanism by which retinoids can modify transglutaminase activity and epidermal differentiation.  相似文献   

19.
Rabbit tracheal epithelial cells undergo terminal cell division, start to express a squamous phenotype, and form cross-linked envelopes when reaching the plateau phase of the growth curve. This terminal differentiation is accompanied by a 20-30-fold increase in the activity of the cross-linking enzyme transglutaminase. This activity is found almost solely in the particulate fraction of homogenized cells and can be solubilized by nonionic detergents. This transglutaminase crossreacts with a monoclonal antibody raised against type I transglutaminase, but does not react with an antiserum against type II transglutaminase. The tracheal transglutaminase contains a protein subunit of approximately 92 kDa. The omission of epidermal growth factor from the medium or the addition of fetal bovine serum, conditions that induce terminal cell division and expression of a squamous phenotype, enhance transglutaminase activity. High calcium concentrations only stimulate transglutaminase activity after the cells become committed to terminal cell division. Retinoids, which inhibit the expression of the squamous phenotype but not terminal cell division, inhibit the enhancement in transglutaminase activity induced by either confluency or serum, indicating that this enzyme activity is under the control of retinoids. Some retinoids are active at concentrations as low as 10(-12) M. The ability of retinoids to inhibit transglutaminase activity correlates well with their capacity to bind to the retinoic acid-binding protein. Our results show that the increase in transglutaminase activity correlates with the induction of the terminal differentiated phenotype and suggest that this enzyme can function as a marker for this program of differentiation of rabbit tracheal epithelial cells in culture. Our results identify the transglutaminase as type I transglutaminase and are in agreement with the concept that this transglutaminase is involved in the formation of cross-linked envelopes.  相似文献   

20.
Lithuanian patients with visual problems were clinically examined for retinitis pigmentosa (RP). A total of 33 unrelated families with autosomal dominant RP (adRP) were identified. Screening for mutations in the rhodopsin (RHO) and peripherin/RDS (RDS) genes was performed using DNA heteroduplex analysis. Direct DNA sequencing in the cases of heteroduplex formation showed the presence of the following mutations and polymorphisms in 14 adRP patients: RHO gene - Lys248Arg (1 case), and Pro347Leu (2 cases); RDS gene - Glu304Gln (12 cases), Lys310Arg (5 cases), and Gly338Asp (12 cases). The presence of these mutations (except Lys248Arg in the RHO gene) was confirmed by relevant restriction enzyme digestion. The frequency of the RDS gene mutations Glu304Gln and Gly338Asp was estimated to be 36.4%, while mutation Lys310Arg was less frequent (15.2%). These 3 RDS gene mutations appear to be polypeptide polymorphisms not related to adRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号