首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 micrometer. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase. AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

2.
Interaction of AMP deaminase with RNA   总被引:1,自引:0,他引:1  
tRNA, 18 S and 28 S ribosomal RNAs were found to activate muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) but inhibit liver and heart AMP deaminases. The macromolecular structures are essential for modulation of enzyme activity, since the effects of RNA disappeared after RNAase treatment. Sucrose density centrifugation experiments clearly demonstrated the binding of purified muscle AMP deaminase to tRNA, 18 S and 28 S RNAs. The binding is reversible and responsive to alterations of pH and KCl concentration. The binding was stable at pH 5.1-7.0 in 0.1 M KCl, but most of the enzyme dissociated at pH 7.5. KCl below 0.1 M concentration had no effect on dissociation of enzyme-RNA complex, but in 0.15 M KCl the complex was partially dissociated and in 0.2 M KCl most of the enzyme was released. Various nucleotides were also effective in dissociation of the enzyme from complex. The binding is saturable and the maximum number of muscle AMP deaminase molecules bound per mol 28 S RNA was calculated to be approx. 30. Liver and heart AMP deaminases were also found to interact with RNA.  相似文献   

3.
Adenylosuccinate synthetase governs the committed step of AMP biosynthesis, the generation of 6-phosphoryl-IMP from GTP and IMP followed by the formation of adenylosuccinate from 6-phosphoryl-IMP and l-aspartate. The enzyme is subject to feedback inhibition by AMP and adenylosuccinate, but crystallographic complexes of the mouse muscle synthetase presented here infer mechanisms of inhibition that involve potentially synergistic ligand combinations. AMP alone adopts the productive binding mode of IMP and yet stabilizes the active site in a conformation that favors the binding of Mg(2+)-IMP to the GTP pocket. On the other hand, AMP, in the presence of GDP, orthophosphate, and Mg(2+), adopts the binding mode of adenylosuccinate. Depending on circumstances then, AMP behaves as an analogue of IMP or as an analogue of adenylosuccinate. The complex of adenylosuccinate.GDP.Mg(2+).sulfate, the first structure of an adenylosuccinate-bound synthetase, reveals significant geometric distortions and tight nonbonded contacts relevant to the proposed catalytic mechanism. Adenylosuccinate forms from 6-phosphoryl-IMP and l-aspartate by the movement of the purine ring into the alpha-amino group of l-aspartate.  相似文献   

4.
Vertebrates have muscle and non-muscle isozymes of adenylosuccinate synthetase (AdSS, EC 6.3.4.4), which catalyzes the first committed step in AMP synthesis. A novel muscle isozyme of adenylosuccinate synthetase, human AdSSL1, is identified from human bone marrow stromal cells. AdSSL1 is 98% identical to mouse muscle type AdSS1 and contains conserved sequence and structural features of adenylosuccinate synthetase. Human AdSSL1 gene is mapped to chromosome 14p32.33. After stimulation, leukemia cells express AdSSL1 in a time-dependent manner different from that of non-muscle adenylosuccinate synthetase. The human AdSSL1 is predominantly expressed in skeletal muscle and cardiac tissue consistent with the potential role for the enzyme in muscle metabolism. Overexpressed AdSSL1 protein in COS-7 cells locates in cytoplasm. Recombinant AdSSL1 protein possesses typical enzymatic activity to catalyze adenylosuccinate formation. The identification of human AdSSL1 with predominant expression in muscle tissue will facilitate future genetic and biochemical analysis of the enzyme in muscle physiology. (Mol Cell Biochem 269: 85–94, 2005)  相似文献   

5.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

6.
B F Cooper  H J Fromm  F B Rudolph 《Biochemistry》1986,25(23):7323-7327
The kinetic mechanism of rat muscle adenylosuccinate synthetase was studied by determining the rates of isotope exchange at equilibrium. A random sequential binding mechanism was indicated for both the forward and reverse reactions. Aspartate, adenylosuccinate, GDP, and Pi were determined to bind in rapid equilibrium. GTP exchanges with both GDP and Pi at the same rate, which is similar to the exchange rate of IMP with adenylosuccinate. Aspartate exchanges with adenylosuccinate at a higher rate than does IMP over the range of concentrations tested. The slower IMP and GTP exchange rates suggest a forward binding mechanism containing a preferred path in which the quaternary complex is most often formed by aspartate binding to the E-GTP-IMP complex. This preferred path is consistent with an interaction between IMP and GTP in the absence of aspartate as determined by isotope scrambling experiments [Bass, M. B., Fromm, H. J., & Rudolph, F. B. (1984) J. Biol. Chem. 259, 12330-12333]. However, the products of such an interaction are tightly bound to the enzyme as no partial exchange reactions between adenylosuccinate and aspartate in the presence or absence of Pi were detected.  相似文献   

7.
Fructose-1,6-diphosphate strongly inhibited adenylosuccinate synthetase purified from rat skeletal muscle. This compound was found to be a non-competitive inhibitor of all substrates of the enzyme. No other glycolytic intermediates affected adenylosuccinate synthetase activity. From these findings, it was proposed that this inhibition might play an important role in the oscillation of glycolysis in skeletal muscle.  相似文献   

8.
Vertebrates possess two isozymes of adenylosuccinate synthetase. The acidic isozyme is similar to the synthetase from bacteria and plants, being involved in the de novo biosynthesis of AMP, whereas the basic isozyme participates in the purine nucleotide cycle. Reported here is the first instance of overexpression and crystal structure determination of a basic isozyme of adenylosuccinate synthetase. The recombinant mouse muscle enzyme purified to homogeneity in milligram quantities exhibits a specific activity comparable with that of the rat muscle enzyme isolated from tissue and K(m) parameters for GTP, IMP, and l-aspartate (12, 45, and 140 microm, respectively) similar to those of the enzyme from Escherichia coli. The mouse muscle and E. coli enzymes have similar polypeptide folds, differing primarily in the conformation of loops, involved in substrate recognition and stabilization of the transition state. Residues 65-68 of the muscle isozyme adopt a conformation not observed in any previous synthetase structure. In its new conformation, segment 65-68 forms intramolecular hydrogen bonds with residues essential for the recognition of IMP and, in fact, sterically excludes IMP from the active site. Observed differences in ligand recognition among adenylosuccinate synthetases may be due in part to conformational variations in the IMP pocket of the ligand-free enzymes.  相似文献   

9.
The enzymes of the purine nucleotide cycle-AMP deaminase, adenylosuccinate synthetase, and adenylosuccinate lyase-were examined as a functional unit in an in vitro system which simulates the purine nucleotide composition of sarcoplasm. Activity of each cycle enzyme in extracts of rat skeletal muscle was observed to increase as ATP/ADP, reflecting the energy state of the system, was lowered from approximately 50 to 1. The increase in AMP deaminase activity could be attributed to effects of energy state and factors such as AMP concentration, which are obligatorily coupled to energy state. The increases in synthetase and lyase activities were accounted for by increases in the concentration of IMP and adenylosuccinate, respectively. The inhibitory influence of IMP concentration on synthetase activity reported in other systems was not observed in this system; synthetase activity progressively increased as IMP concentration was raised to approximately 4 mM, and apparent saturation occurred at concentrations above 4 mM. Also, adenylosuccinate was found to be an activator of AMP deaminase. The results of this study document that the activities of the enzymes of the purine nucleotide cycle increase in parallel at low energy states, and the components of the cycle function as a coordinated unit with individual enzyme activities linked via concentrations of cycle intermediates.  相似文献   

10.
Rat liver contains two types of adenylosuccinate synthetase which can be distinguished by isoelectroforcusing or immunochemical analysis. One type is identical with the enzyme in rat skeletal muscle (Type M) and the other is specific for the liver (Type L). Type L was more susceptible to nucleotide inhibition, but less susceptible to inhibition by fructose-1,6-diphosphate than Type M. These differences suggest that these isozymes play different regulatory roles in the liver.  相似文献   

11.
Myosin and F-actin were prepared from bovine carotid arterial smooth muscle and the properties of the binding of myosin to F-actin were compared with those of the binding of skeletal muscle myosin to F-actin. The following differences were observed between skeletal and smooth muscle myosins. 1. The rate of ATP-induced dissociation of arterial actomyosin was equal to that of hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin, but was much lower than those of skeletal muscle actomyosin and of hybrid actomyosin reconstituted from skeletal muscle myosin and arterial F-actin. 2. The amount of ATP necessary for complete dissociation of arterial actomyosin was 2 mol/mol of myosin, although it is well known that skeletal muscle actomyosin is dissociated completely by the addition of 1 mol ATP per mol of myosin. 3. Arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin did not dissociate upon addition of 0.1 mM PPi, while skeletal muscle actomyosin dissociated completely. 4. In the absence of Mg2+, neither dissociation by ATP nor ATPase [EC 3.6.1.3] activity was observed with arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin. On the other hand, skeletal muscle actomyosin dissociated almost completely upon addition of ATP and showed a considerably high ATPase activity. These observations reveal marked differences between myosins from skeletal and smooth muscles in their binding properties to F-actin.  相似文献   

12.
The binding of pig skeletal muscle lactate dehydrogenase by F-actin has been studied using the sedimentation method in 10 mM Tris-acetate buffer, pH 6.0 at 20 degrees C. Adsorption capacity of F-actin is equal to (1 +/- 0.1) . 10(-5) moles of lactate dehydrogenase per 1 g of actin. NADH decreases the affinity of F-actin with respect to lactate dehydrogenase. The binding of lactate dehydrogenase by F-actin in diminishing the rate of enzymatic reduction of alpha-ketoglutarate. The microscopic dissociation constant for the complex of the enzyme with F-actin which is estimated from the dependence of the enzymatic reaction rate of F-actin concentration at saturating NADH concentrations is equal (3.0 +2- 0.5) . 10(-7) M. It has been shown that the bound enzyme is characterized by the greater value of Km and the lower value of Vmax in comparison to the free enzyme.  相似文献   

13.
The affinity of eukaryotic tyrosyl-tRNA synthetases from bovine liver and from yeast for E. coli ribosomal RNA and synthetic polyribonucleotides has been studied by protein binding on the rRNA-Sepharose column and enzyme inhibition by high molecular weight RNAs. Tyrosyl-tRNA synthetase from bovine liver (Mr 2.59 kDa) was fully retained on the rRNA-Sepharose and eluted by buffer with 100 mM KCl. The functionally active modified form of bovine liver tyrosyl-tRNA synthetase obtained by endogenous limited proteolysis (Mr 2.38 kDa) partially maintains the affinity for rRNA and is eluted by 50 mM KCl. The highest rRNA-binding ability was revealed for yeast tyrosyl-tRNA synthetase eluted by 200 mM KCl. The E. coli tyrosyl-tRNA synthetase was not retained on rRNA-Sepharose. The aminoacylation activities of both bovine liver and yeast tyrosyl-tRNA synthetases were efficiently inhibited by rRNA and the inhibition was partially competitive in respect to tRNA(Tyr). At the same time the activities of proteolytically modified bovine tyrosyl-tRNA synthetase and E. coli tyrosyl-tRNA synthetase were not influenced by the addition of rRNA. Synthetic single- and double-stranded polyribonucleotides specifically inhibited the activity of bovine tyrosyl-tRNA synthetase to different extent. The inhibition degree of bovine liver tyrosyl-tRNA synthetase decreased in the order: poly (G) greater than poly (I) greater than poly (I).poly (C) greater than poly (G).poly (C) greater than poly (C) greater than poly (A). Poly (U) did not inhibit the activity of bovine liver tyrosyl-tRNA synthetase.  相似文献   

14.
OPERATION OF THE PURINE NUCLEOTIDE CYCLE IN ANIMAL TISSUES   总被引:1,自引:0,他引:1  
1. The operation of the purine nucleotide cycle, consisting of the enzymes adenylate deaminase (E.C. 3.5.4.6), adenylosuccinate synthetase (E.C. 6.3.4.4) and adenylosuccinate lyase (E.C. 4.3.2.2), has been reviewed with reference to its metabolic function in animal tissues.
2. Abundant evidence, both from in vitro and in vivo studies, suggests that the purine nucleotide cycle serves to stabilize the adenylate 'energy charge' (or 'phosphorylation potential') in the cytoplasm of vertebrate cells during a temporary imbalance between ATP-consumption and ATP-production. This stabilization, however, is absent or much less efficient in tissues of invertebrates.
3. The hypothesis that AMP-deaminase is involved in the regulation of glycolysis is not supported by recent work. In a variety of cell types, including skeletal muscle and blood platelets, blocking of AMP-deaminase activity (due to a genetic defect or to pharmacological inhibition) is without effect on the glycolytic rate. Detailed kinetic and histochemical analysis of energy metabolism shows lack of correlation between AMP-deaminase activity and glycolysis in skeletal muscle during exercise.
4. The purine nucleotide cycle appears to control the level of citric acid cycle intermediates in skeletal muscle. Pharmacological inhibition of adenylosuccinate lyase or adenylosuccinate synthetase leads to a reduced availability of four-carbon 'sparker' molecules to the Krebs cycle with a concomitant impairment of aerobic energy production during muscular work.
5. The cycle appears to be a major pathway for amino acid deamination in skeletal muscle and brain of vertebrates, but not in kidney or liver.  相似文献   

15.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

17.
The distribution of adenylosuccinate synthetase isozymes changed during liver regeneration in the rat. Type L enzyme increased in correlation with liver cell proliferation and reached a maximum of approximately 80% of total activity, whereas Type M enzyme decreased conversely. These findings suggest that Type L enzyme in liver contributes to adenine nucleotide biosynthesis.  相似文献   

18.
《The Journal of cell biology》1984,98(6):1919-1925
Physarum profilin reduces the rates of nucleation and elongation of F- actin and also reduces the extent of polymerization of actin at the steady state in a concentration-dependent fashion. The apparent critical concentration for polymerization of actin is increased by the addition of profilin. These results can be explained by the idea that Physarum profilin forms a 1:1 complex with G-actin and decreases the concentration of actin available for polymerization. The dissociation constant for binding of profilin to G-actin is estimated from the kinetics of polymerization of G-actin and elongation of F-actin nuclei and from the increase of apparent critical concentration in the presence of profilin. The dissociation constants for binding of Physarum profilin to Physarum and muscle actins under physiological ionic conditions are in the ranges of 1.4-3.7 microM and 11.3-28.5 microM, respectively. When profilin is added to an F-actin solution, profilin binds to G-actin which co-exists with F-actin, and then G- actin is dissociated from F-actin to compensate for the decrease of the concentration of free G-actin and to keep it constant at the critical concentration. At the steady state, free G-actin of the critical concentration is in equilibrium not only with F-actin but also with profilin-G-actin complex. The stoichiometry of 1:1 for the formation of complex between profilin and G-actin is directly shown by means of chemical cross-linking.  相似文献   

19.
The bindings of S-1 and the two heads of HMM with pyrene-labeled F-actin were studied using the change in light-scattering intensity or that in the fluorescence intensity of the pyrenyl group. At low ionic strength (50 mM KCl), both S-1 and HMM became bound tightly with F-actin (Kd less than 0.1 microM) and both heads of HMM became bound to F-actin. The affinities of S-1 and HMM for F-actin decreased with increasing KCl concentration. In 1 M KCl, the Kd values of S-1 and HMM for F-actin were 11 and 0.58 microM, respectively. Thus, HMM was bound to F-actin 19 times more tightly than S-1. We compared the extent of binding of HMM to F-actin measured by a centrifugation method with that measured by the fluorescence change of pyrenyl-group, and found that even in 1 M KCl, HMM became bound to F-actin with a two-headed attachment. We measured the kinetics of binding and dissociation of acto-S-1 and acto-HMM from the time course of the change in light-scattering intensity after mixing S-1 or HMM with F-actin at 1 M KCl and that after mixing 1 M KCl with acto-S-1 or acto-HMM formed at low ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
High-performance ion-exchange liquid chromatography was utilized for the purification of the acidic isozyme of adenylosuccinate synthetase from rat liver. Initial steps in the purification included ammonium sulfate fractionation and DEAE-cellulose and agarose-GTP affinity columns. The final steps were done on a SynChropak AX-300 anion-exchange support. The enzyme was purified 3000-fold with an overall yield of 10%. The enzyme preparation exhibited only one protein band on gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号