首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of road salt deicers on sediment biogeochemistry   总被引:1,自引:0,他引:1  
Road salt deicers, especially NaCl and CaCl2, are increasingly applied to paved areas throughout the world. The goal of this study is to investigate the influence of high concentrations of these salts on wetland biogeochemistry. Sediment cores were collected in fall and spring from a freshwater wetland fringing an urban kettle lake (Asylum Lake, Kalamazoo, MI, USA), and incubated for 100 days in deionized water (control) or with treatments of 1 or 5 g/L CaCl2·2H2O or 5 g/L NaCl to simulate addition of road salt deciers. At monthly intervals, cores were sliced into three depths (0–5, 5–10, 10–15 cm) and pore waters extracted for analysis of pH, total alkalinity and dissolved Mn(II), Fe(II), PO 4 ?3 , NH3, H2S, SO4 ?2, Na, K, Mg, and Ca. Changes in solid phase geochemistry were assessed by measuring the percent organic matter and the distribution of Fe and Mn among four operationally defined sediment fractions (exchangeable, carbonate, reducible, oxidizable) in the control and treatment cores. Addition of NaCl, and especially CaCl2, stimulated significant growth of microbial mats at the core sediment–water interface and led to decreased pH and increased concentrations of Mn(II), Fe(II) and exchangeable cations (Ca, Mg, K, Na) in the sediment pore waters. This study demonstrates that the influx of road salt deciers is likely to have a significant impact on biogeochemical cycling in wetland sediments.  相似文献   

2.
A three-phase multi-species electro–chemo-mechanical model of articular cartilage is developed that accounts for the effect of two water compartments, namely intrafibrillar water stored in between collagen fibrils and extrafibrillar water covering proteoglycans. The collagen fibers constitute the solid phase while intrafibrillar water and dissolved NaCl and CaCl2 on one hand and extrafibrillar water, ions Na+, Ca2+ and Cl? and proteoglycans on the other hand, form the two fluid phases. The complete picture that includes time-dependent mass transfers between the two fluid phases, diffusion of water and ions and electrical flow emerges from the Clausius–Duhem inequality but it is deferred to further study. The analysis is restricted to equilibrium states. The present work complements the mechanical model developed in Loret and Simões (Mech Material 36(5-6): 515-541, 2004a) where the presence of the sole NaCl was considered. In its current version, the model can handle mechanical and chemical loadings and unloadings involving the two salts, NaCl and CaCl2. In order to reproduce experimental data, the shielding effects are made cation-dependent. Strong orientation of collagen fibers parallel to the joint surface implies anisotropic mechanical properties. Electro–chemo-mechanical couplings result in a chemistry-dependent apparent tensile Poisson’s ratio, that increases to large values as the solution gets fresher. The model captures these aspects as well. The features of the model are first exposed in an infinitesimal strain context. Subsequently, large strains that typically occur in uniaxial traction under deionized water are accounted for, and a nonlinear anisotropic hyperelastic behavior is developed. Parametric identification and simulations of actual loading processes are described in a companion paper, Loret and Simões (Biomech Model Mechanobiol, in press, DOI 10.1007/s10237-004-0063-6).  相似文献   

3.
1. In the presence of 0.05 per cent dextrose the respiration of Aspergillus niger is increased by NaCl in concentrations of 0.25 to 0.5M, and by 0.5M CaCl2. 2. Stronger concentrations, as 2M NaCl and 1.25M CaCl2, decrease the respiration. The decrease in the higher concentrations is probably an osmotic effect of these salts. 3. A mixture of 19 cc. of NaCl and 1 cc. of CaCl2 (both 0.5M) showed antagonism, in that the respiration was normal, although each salt alone caused an increase. 4. Spores of Aspergillus niger did not germinate on 0.5M NaCl (plus 0.05 per cent dextrose) while they did on 0.5M CaCl2 (plus 0.05 per cent dextrose) and on various mixtures of the two. This shows that a substance may have different effects on respiration from those which it has upon growth.  相似文献   

4.
The pH of a 0.01 molar solution of glycine, half neutralized with NaOH, is 9.685. Addition of only one of the salts NaCl, KCl, MgCl2, or CaCl2 will lower the pH of the solution (at least up to 1 µ). If a given amount of KCl is added to a glycine solution, the subsequent addition of increasing amounts of NaCl will first raise the pH (up to 0.007 M NaCl). Further addition of NaCl (up to 0.035 M NaCl) will lower the pH, and further additions slightly raise the pH. The same type of curve is obtained by adding NaCl to glycine solution containing MgCl2 or CaCl2 except that the first and second breaks occur at 0.015 M and 0.085 M NaCl, respectively. Addition of CaCl2 to a glycine solution containing MgCl2 gives the same phenomena with breaks at 0.005 M and 0.025 M CaCl; or at ionic strengths of 0.015 µCaCl2 and 0.075 µCaCl2. This indicates that the effect is a function of the ionic strength of the added salt. These effects are sharp and unmistakable. They are almost identical with the effects produced by the same salt mixtures on the pH of gelatin solutions. They are very suggestive of physiological antagonisms, and at the same time cannot be attributed to colloidal phenomena.  相似文献   

5.
1. It is shown that NaCl acts like CaCl2 or LaCl3 in preventing the diffusion of strong acids through the membrane of the egg of Fundulus with this difference only that a M/8 solution of NaCl acts like a M/1,000 solution of CaCl2 and like a M/30,000 solution of LaCl3. 2. It is shown that these salts inhibit the diffusion of non-dissociated weak acid through the membrane of the Fundulus egg but slightly if at all. 3. Both NaCl and CaCl2 accelerate the diffusion of dissociated strong alkali through the egg membrane of Fundulus and CaCl2 is more efficient in this respect than NaCl. 4. It is shown that in moderate concentrations NaCl accelerates the rate of diffusion of KCl through the membrane of the egg of Fundulus while CaCl2 does not.  相似文献   

6.
1. In relatively low concentrations of NaCl, KCl, and CaCl2 the rate of respiration of Bacillus subtilis remains fairly constant for a period of several hours, while in the higher concentrations, there is a gradual decrease in the rate. 2. NaCl and KCl increase the rate of respiration of Bacillus subtilis somewhat at concentrations of 0.15 M and 0.2 M respectively; in sufficiently high concentrations they decrease the rate. CaCl2 increases the rate of respiration of Bacillus subtilis at a concentration of 0.05 M and decreases the rate at somewhat higher concentrations. 3. The effects of salts upon respiration show a well marked antagonism between NaCl and CaCl2, and between KCl and CaCl2. The antagonism between NaCl and KCl is slight and the antagonism curve shows two maxima.  相似文献   

7.
1. The equations which serve to predict the injury of tissue in 0.52 M NaCl and in 0.278 M CaCl2 and its subsequent recovery (when it is replaced in sea water) also enable us to predict the behavior of tissue in mixtures of these solutions, as well as its recovery in sea water after exposure to mixtures. 2. The reactions which are assumed in order to account for the behavior of the tissue proceed as if they were inhibited by a salt compound formed by the union of NaCl and CaCl2 with some constituent of the protoplasm (certain of these reactions are accelerated by CaCl2). 3. In this and preceding papers a quantitative theory is developed in order to explain: (a) the toxicity of NaCl and CaCl2; (b) the antagonism between these substances; (c) the fact that recovery (in sea water) may be partial or complete, depending on the length of exposure to the toxic solution.  相似文献   

8.
Impulses from single electroreceptors (small pit organs) of catfish (Ictalurus nebulosus) were recorded during stimulation by square pulses. Solutions with different concentrations of potassium, sodium, and calcium ions were applied to the pore of the receptor. Solutions with a low CaCl2 concentration did not alter the responses of the receptor. Calcium ions in concentrations of over 5 mM increased the threshold of the response to electrical stimulation. The threshold to anodal stimulation was increased in solutions of 2 mM sodium and potassium and no response was given to a cathodal stimulus. The effect of 2 mM solutions of NaCl and KCl was abolished by the addition of 0.4 mM CaCl2 or by application of a long anodal stimulus of high intensity (10−8∓10−7 A/mm2). Increasing the potassium ion concentration to 10–20 mM restored normal receptor function but a further increase led to elevation of the threshold. The action of an electric current is compared with the action of the ions.  相似文献   

9.
Gene encoding for a putative glutamate decarboxylase (GAD: EC 4.1.1.15) from the hyperthermophilic archaeon Pyrococcus furiosus was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (PF1159) from P. furiosus showed some identity with other group II decarboxylases from an archaea and bacteria. The GAD from P. furiosus (PfGAD) was expressed in Escherichia coli, and the recombinant protein has a molecular mass of 41 kDa, determined by SDS-PAGE. The optimum temperature and pH for GAD activity were 75°C and 6.0, respectively. The half-life of heat inactivation was approximately 60 min at 90°C. The GAD activity was found to be dependent on various salts, such as CaCl2, NaCl, KCl, and NaBr, with an optimum concentration of 400 mM, but not (NH4)2SO4. PfGAD demonstrated activity against various substrates, such as l-glutamate, l-aspartate, and l-tyrosine. The results of the kinetics experiment indicated that l-aspartate was a better substrate of PfGAD than l-glutamate and Ltyrosine.  相似文献   

10.

The influence of CaCl2 and NaCl in the hydrolytic activity and the influence of CaCl2 in the synthesis of fucosylated oligosaccharides using α-l-fucosidase from Thermotoga maritima were evaluated. The hydrolytic activity of α-l-fucosidase from Thermotoga maritima displayed a maximum increase of 67% in the presence of 0.8 M NaCl with water activity (aw) of 0.9672 and of 138% in the presence of 1.1 M CaCl2 (aw 0.9581). In addition, the hydrolytic activity was higher when using CaCl2 compared to NaCl at aw of 0.8956, 0.9581 and 0.9672. On the other hand, the effect of CaCl2 in the synthesis of fucosylated oligosaccharides using 4-nitrophenyl-fucose as donor substrate and lactose as acceptor was studied. In these reactions, the presence of 1.1 M CaCl2 favored the rate of transfucosylation, and improved the yield of synthesis duplicating and triplicating it with lactose concentrations of 58 and 146 mM, respectively. CaCl2 did not significatively affect hydrolysis rate in these reactions. The combination of the activating effect of CaCl2, the decrement in aw and lactose concentration had a synergistic effect favoring the synthesis of fucosylated oligosaccharides.

  相似文献   

11.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

12.
It was examined how essential cations, Ca2+ and K+, can mitigate the toxic effects of NaCl on two different almond species (Prunus amygdalus Batsch) rootstocks, Garnem (GN15) and Bitter Almond. The tree growth parameters (water potential (Ψw), gas exchange, nutrient uptake) and leaf chlorophyll (Chl) content were measured in control and NaCl-treated plants with or without KCl or CaCl2 supplements. The addition of CaCl2 and KCl to Bitter Almond trees reduced their dry weight, shoot growth and leaf number although net photosynthetic assimilation rate (A) was not affected. These results indicated that changing of photo-assimilates flux to proline and/or soluble sugars synthesis may help to increase leaf Ψw. The Garnem trees also did not respond to the CaCl2 and KCl addition indicating that the plants are already getting enough of these two cations (Ca2+ and K+). In both rootstocks, NaCl in the medium reduced growth attributes, Ψw, A, stomatal conductance (gs), and leaf Chl content. When CaCl2 and KCl fertilizers were added together with NaCl to Bitter Almond trees, leaf K+ and Ca2+ contents increased while Na+ and Cl decreased leading to higher Ca/Na and K/Na ratios, but shoot growth was not improved and even declined compared to NaCl-treated trees. It appears that the addition of salts further aggravated osmotic stress as indicated by the accumulation of proline and soluble sugars in leaf tissues. The addition of KCl or CaCl2 to NaCl-treated GN15 trees did not increase A, leaf Ψw, and shoot growth but improved ionic balances as indicated by higher Ca/Na and K/Na ratios. The reduction in A was mainly due to non-stomatal limitations in GN15, possibly due to the degradation of Chl a, unlike Bitter Almond, for which the reduction of A was due to stomata closure. The improvement in ionic balances and water status of Bitter Almond trees in response to addition of KCl or CaCl2 was apparently offset by a high sensitivity to Cl; therefore, no-chloride salts should be the preferred forms of fertilizers for this rootstock. Both rootstocks were sensitive to soil salinity and cation supplements were of limited value in mitigating the effect of excessive salt concentrations.  相似文献   

13.
A cephalin-cholesterol membrane model is described whose electrical resistance can be reversibly raised by CaCl2 or lowered by KCl or NaCl whether these ions are added to the membrane by mechanical immersion or are driven in electrically. Either KCl or NaCl acts antagonistically to CaCl2. Experiments with controlled pH indicate that the above effects depend somehow on combination of the cations with the phospholipid acidic groups. Also, they are correlated with decreased membrane hydration in CaCl2 solutions, and increased hydration in KCl or NaCl solutions. It is conjectured that cells may regulate their transsurface ion pathways and fluxes by K-Ca competition for negatively charged binding sites on plasma membrane phospholipid. It is regarded as a corollary to say that a fundamental event in excitation is displacement of membrane Ca from such a site by catelectrotonically propelled K.  相似文献   

14.
M2, an integral membrane protein of influenza A virus, was purified from either influenza A virus-infected CV-1 cells or from Spodoptera frugiperda (Sf9) cells infected with a recombinant-M2 baculovirus. The purified protein, when incorporated into phospholipid bilayer membranes, produced ion-permeable channels with the following characteristics: (1) The channels appeared in bursts during which unit conductances of diverse magnitudes (25–500 pS) were observed. (2) The most probable open state was usually the lowest unit conductance (25–90 pS). (3) The channels were selective for cations; t Na = 0.75 when 150 mm NaCl bathed both sides of the membrane. (4) Amantadine reduced the probability of opening of the high conductance state and also the conductance of the most probable state. (5) Reducing pH increased the mean current through the open channel as well as the conductance of the most probable state. (6) The sequence of selectivity for group IA monovalent cations was Rb > K > Cs ~ Na > Li. The pH activation, amantadine block and ion selectivity of the M2 protein ion channel in bilayers are consistent with those observed on expression of the M2 protein in oocytes of Xenopus laevis as well as for those predicted for the proposed role of an ion channel in the uncoating process of influenza virus. The finding that the M2 protein has intrinsic ion channel activity supports the hypothesis that it has ion channel activity in the influenza virus particle.  相似文献   

15.
Nucleoli from Novikoff hepatoma ascites cells contain phosphatase activity that acts upon 32P-labeled nucleolar protein substrates. The activity is optimal near pH 7.0 and is inhibited by increasing concentrations of NaCl. The divalent cations CaCl2, MnCl2 and CoCl2 at 6 mM inhibited phosphatase activity from 30–60%. ZnCl2 completely inhibited the activity above 2 mM while EDTA and MgCl2 had little effect. The activity was stimulated by dithiothreitol and inhibited by N-ethylmaleimide indicating a requirement for free sulfhydryl groups.  相似文献   

16.
X-ray diffraction studies have been made on the effects of cations upon the dipamitoyl phosphatidylcholine/water system, which originally consists of a lamellar phase with period of 64.5 Å and of excess water. Addition of 1 mM CaCl2 destroys the lamellar structure and makes it swell into the excess water. the lamellar phase, however, reappears when the concentration of CaCl2 increases: a partially disordered lamellar phase with the repeat distance of 150–200 Å comes out at the concentration of about 10 mM, the lamellar diffraction lines become sharp and the repeat distance decreases with increasing CaCl2 concentration. A small amount of uranyl acetate destroys lamellar phase in pure water. MgCl2 induces the lamellar phase of large repeat distance, whereas LiCl, NaCl, KCl, SrCl2 and BaCl2 exhibit practically no effect by themselves. Addition of cholesterol to the phosphatidylcholine bilayers tends to stabilize the lamellar phaseThe high-angle reflections indicate that molecular arrangements on phosphatidylcholine bilayers change at CaCl2 concentrations around 0.5 M. The bilayers at high CaCl2 concentration seem to consist of two phases of pure phosphatidylcholine and of equimolar mixture of phosphatidylcholine and cholesterol.  相似文献   

17.
CaCl2 or MgCl2 but not NaCl enhances the soyabean lectin-induced agglutination of liposomes prepared from total lipids of erythrocyte membranes. The addition of purified phosphatidylserine to the total lipids of erythrocyte membranes before the formation of liposomes inhibits lectin-induced agglutinability of the preparation in the absence of CaCl2, but not in its presence. When preformed phosphatidylserine liposomes are added to liposomes of total lipids of erythrocyte ghosts, they do not inhibit agglutination, indicating that phosphatidylserine does not inhibit the lectin directly. CaCl2 or MgCl2 but not NaCl also stimulates the soyabean lectin-induced agglutination of human erythrocyte membranes.Electron micrographs indicate that the liposome preparations are multilamellar and separate even in the presence of CaCl2. When such liposomes are treated with lectin with or without CaCl2, the electron micrographs show significant agglutination without apparent fusion. The reversal of the agglutination of liposomes by specific sugars followed by turbidimetric and electron microscopic techniques supports the conclusion that CaCl2 stimulated lectin-induced agglutination is unaccompanied by fusion.The stimulation by divalent cations of lectin-induced agglutination of erythrocyte ghosts or of our liposomes may be due to a decrease in apparent surface charge of these membrane systems.  相似文献   

18.
19.
Abstract— Myelin fragments were isolated from bovine optic nerves and then exposed to solutions of NaCl, CaCl2, LaCl3 or to water. Measurements of the water content of myelin pellets and the hydrophobicity of myelin fragments indicated an apparent isoelectric point at about pH 4.0 which increased with increasing membrane counterion valence. The exposure of myelin to CaCl2 and LaCl3 solutions for 1 hr removed relatively more cholesterol and galactolipid than protein or phospholipid. The same changes were observed after 12 days of storage in all four solutions. Myelin ultrastructure was evaluated by electron microscopy after positive and negative staining. No pronounced changes in myelin ultra-structure were seen after exposure to any of these solutions although extensive beading of the lamellae was observed and the magnitude of the major period was greater than that reported for native myelin. While differences in the physical properties of myelin after exposure to Na+, Ca++, or La+++ ions could be explained by considering the fixed charge shielding capabilities of these cations, changes of state of the membrane infrastructure could not be ruled out. At pH values above 4.0 myelin fragments behaved like a cation exchange system.  相似文献   

20.
Protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM, E.C. 2.1.1.77) was previously shown to be enzymatically methyl esterified in an autocatalytic manner at altered aspartyl residues; methyl esters are observed in a subpopulation of the enzyme termed theαPCM fraction [Lindquist and McFadden (1994),J. Protein Chem. 13, 23–30]. The altered aspartyl sites serving as methyl acceptors inαPCM have now been localized by using proteolytic enzymes and chemical cleavage techniques in combination with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify fragments of the [3H]automethylated enzyme that contain a [3H]methyl ester. Methylation was positively identified at positions Asn188 and Asp217 in the enzyme sequence, a consequence of the spontaneous alteration of these sites tol-isoaspartyl ord-aspartyl sites and their methylation by active PCM molecules. The identification of more than one site of automethylation shows thatαPCM is not a homogeneous population of damaged PCM molecules, but rather a complex population of molecules with a variety of age-altered damage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号