首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee DH  Pfeifer GP 《Mutation research》2008,641(1-2):19-26
7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) is one of the most common DNA lesions induced by oxidative stress. This lesion can be bypassed by DNA polymerase eta (Pol η) using in vitro translesion synthesis (TLS) reactions. However, the role that Pol η plays in vivo contributing to 8-oxo-dG mutagenesis remains unclear. To clarify the role of Pol η in 8-oxo-dG mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector (pSP189) which replicates in mammalian cells. The pSP189 plasmid was treated with methylene blue plus light (MBL), which produces predominantly 8-oxo-dG in DNA, and was then replicated in GM637 cells in presence of siRNA that knocks down the expression of Pol η, or in XP-V cells, which lack functional Pol η. The mutant frequencies were increased in the Pol η siRNA knockdown cells and in XP-V cells relative to control, meaning that Pol η plays an important role in preventing 8-oxo-dG mutagenesis. In the same system, knockdown of OGG1 also led to an increase in mutagenesis. Neither the type of mutations nor their distribution along the supF gene were significantly different between control and target specific siRNA-transfected cells (or XP-V cells) and were predominantly G to T transversions. These results show that Pol η has an important role in error-free 8-oxo-dG lesion bypass and avoidance of oxidative stress-induced mutagenesis in vivo.  相似文献   

2.
Nitric oxide is an important bioregulatory molecule with a range of physiological functions. Nitric oxide can also react with oxygen species to produce a range of reactive nitrogen oxides that can damage DNA and lead to mutations of the DNA base sequence. The mutagenicity of a variety of reactive nitrogen oxide species and related DNA damaging agents in the supF assay are reviewed here, in the context of recent reports that relate to the nature of the DNA lesions responsible for the induced mutations. Mutations induced by nitric oxide in the supF assay are compared to those induced by N2O3, nitrous acid, peroxynitrite and different reactive oxygen species. The effect of replication of the damaged pSP189 plasmid in human cells or Escherichia coli cells is also considered.  相似文献   

3.
In order to characterize the molecular nature of singlet oxygen (1O2) induced mutations in mammalian cells, a SV40-based shuttle vector (pi SVPC13) was treated with singlet oxygen arising from the thermal decomposition of the water-soluble endoperoxide of 3,3'-(1,4-naphthylidene) dipropionate (NDPO2). After the passage of damaged plasmid through monkey COS7 cells, the vector was shuffled into E. coli cells, allowing the screening of supF mutants. The mutation spectrum analysis shows that single and multiple base substitutions arose in 82.5% of the mutants, the others being rearrangements. The distribution of mutations within the supF gene is not random and some hotspots are evident. Most of the point mutations (98.4%) involve G:C base pairs and G:C to T:A transversion was the most frequent mutation (50.8%), followed by G:C to C:G transversion (32.8%). These results indicate that mutagenesis in mammalian cells, mediated by 1O2-induced DNA damage, is targeted selectively at guanine residues.  相似文献   

4.
5.
The fate and stability of fully or partially single-stranded DNA molecules transfected into mammalian cells have been analysed. For this, we constructed a simian virus 40 (SV40)-based shuttle vector containing the f1 bacteriophage replication origin in the two possible orientations (pi SVF1-A and pi SVF1-B). This vector contains the SV40 origin of replication, the late viral genes and DNA sequences for replication and selection in Escherichia coli. It also carries the lacO sequence, which permits the analysis of plasmid stability. Single-stranded DNA from pi SVF1-A and pi SVF1-B were produced in bacteria and annealed in vitro to form a heteroduplex molecule. We showed that, in monkey kidney COS7 cells, single-stranded vectors replicate to form duplex molecules. After transfection of the three forms of molecules (single-stranded, heteroduplex or double-stranded), replicated DNA was rescued in E. coli. Vector stability was analysed by checking for plasmid rearrangements and screening for lacO mutants. The single-stranded pi SVF1 has a lower rearrangement level, while the spontaneous mutation frequency (on the lacO target) is in the same range as for the double-stranded vector. In contrast, the level of spontaneous mutagenesis is higher for the heteroduplex than for the single- and double-stranded forms. In addition, we found that replication of heteroduplex with one strand containing ultraviolet light-induced lesions yields progeny molecules in which the irradiated strand is mostly lost. This result indicates for the first time the specific loss of the damaged strand in mammalian cells.  相似文献   

6.
An SV40-based shuttle vector system was used to identify the types of mutational changes and the sites of mutation within the supF DNA sequence generated by the four stereoisomers of benzo[c]phenanthrene 3,4-dihydrodiol 1,2-epoxide (B[c]PhDE), by racemic mixtures of bay or fjord region dihydrodiol epoxides (DE) of 5-methylchrysene, of 5,6-dimethylchrysene, of benzo[g]chrysene and of 7-methylbenz[a]anthracene and by two direct acting polycyclic aromatic hydrocarbon carcinogens, 7-bromomethylbenz[a]anthracene (7-BrMeBA) and 7-bromomethyl-12-methylbenz[a]anthracene (7-BrMe-12-MeBA). The results of these studies demonstrated that the predominant type of mutation induced by these compounds is the base substitution. The chemical preference for reaction at deoxyadenosine (dAdo) or deoxyguanosine (dGuo) residues in DNA, which is in general correlated with the spatial structure (planar or non-planar) of the reactive polycyclic aromatic hydrocarbon, is reflected in the preference for mutation at AT or GC pairs. In addition, if the ability to react with DNA in vivo is taken into account, the relative mutagenic potencies of the B[c]PhDE stereoisomers are consistent with the higher tumorigenic activity associated with non-planar polycyclic aromatic hydrocarbons and their extensive reaction with dAdo residues in DNA. Comparison of the types of mutations generated by polycyclic aromatic hydrocarbons and other bulky carcinogens in this shuttle vector system suggests that all bulky lesions may be processed by a similar mechanism related to that involved in replication past apurinic sites. However, inspection of the distribution of mutations over the target gene induced by the different compounds demonstrated that individual polycyclic aromatic hydrocarbons induce unique patterns of mutational hotspots within the target gene. A polymerase arrest assay was used to determine the sequence specificity of the interaction of reactive polycyclic aromatic hydrocarbons with the shuttle vector DNA. The results of these assays revealed a divergence between mutational hotspots and polymerase arrest sites for all compounds investigated, i.e., sites of mutational hotspots do not correspond to sites where high levels of adduct formation occur, and suggested that some association between specific adducts and sequence context may be required to constitute a premutagenic lesion. A site-specific mutagenesis system employing a single-stranded vector (M13mp7L2) was used to investigate the mutational events a single benzo[a]pyrene or benzo[c]phenanthrene dihydrodiol epoxide–DNA adduct elicits within specific sequence contexts. These studies showed that sequence context can cause striking differences in mutagenic frequencies for given adducts. In addition, these sequence context effects do not originate only from nucleotides immediately adjacent to the adduct, but are also modulated by more distal nucleotides. The implications of these results for mechanisms of polycyclic aromatic hydrocarbon-induced mutagenesis and carcinogenesis are discussed.  相似文献   

7.
We are using an SV40-based shuttle vector, pZ189, to study mechanisms of mutagenesis in mammalian cells. The vector can be treated with mutagens in vitro and replicated in animal cells; resulting mutants can be selected and amplified in bacteria for DNA sequencing. This versatile vector system has allowed us to explore several different questions relating to the mutagenic process. We have studied the direct effects of template damage caused by UV or benzo[a]pyrene diolepoxide by treating vector DNA with these agents and then replicating the damaged DNA in monkey cells. Mutational mechanisms were deduced from the spectrum of mutations induced in the supF target gene of the vector DNA. To study the role of indirect effects of DNA damage on mutagenesis in mammalian cells, we have treated the cells and the vector DNA separately with DNA-damaging agents. We find that pretreatment of cells with DNA-damaging agents, or with conditioned medium from damaged cells, causes an enhancement of mutagenesis of a UV-damaged vector. Thus, DNA damage can act indirectly to enhance the mutagenic process. We also have preliminary evidence that pZ189 can be used in an in vitro DNA replication system to study the process of mutation fixation on the biochemical level. We believe that the pZ189 vector will prove to be as useful for in vitro studies of mutational mechanisms as it has been for in vivo studies.  相似文献   

8.
A new system is described to determine the mutational spectra of mutagens and carcinogens in Escherichia coli; data on a limited number (142) of spontaneous mutants is presented. The mutational assay employs a method to select (rather than screen) for mutations in a supF target gene carried on a plasmid. The E. coli host cells (ES87) are lacI (am26), and carry the lacZΔM15 marker for -complementation in β-galactosidase. When these cells also carry a plasmid, such as pUB3, which contains a wild-type copy of supF and lacZ-, the lactose operon is repressed (off). Furthermore, supF suppression of laclum26 results in a lactose repressor that has an uninducible, laclS genotype, which makes the cells unable to grow on lactose minimal plates. In contrast, spontaneous or mutagen-induced supF mutations in pUB3 prevent suppresion of laclam26 and result in constitutive expression of the lactose operon, which permits growth on lactose minimal plates. The spontaneous mutation frequency in the supF gene is 0.7 and 1.0 × 10−6 without and with SOS induction, respectively. Spontaneous mutations are dominated by large insertions (67% in SOS-uninduced and 56% in SOS-induced cells), and their frequency of appearance is largely unaffected by SOS induction. These are identified by DNA sequencing to be Insertion Element: IS1 dominates, but IS4, IS5, gamma-delta and IS10 are also obtained. Large deletions also contribute significantly (19% and 15% for - SOS and +SOS, respectively), where a specific deletion between a 10 base pair direct repeat dominates; the frequency of appearance of these mutations also appears to be unaffected by SOS induction. In contrast, SOS induction increases base pairing mutations (13% and 27% for -SOS and +SOS, respectively), The ES87/pUB3 system has many advantages for determining mutational spectra, including the fact that mutant isolation is fast and simple, and the determination of mutational changes is rapid because of the small size of supF.  相似文献   

9.
Photodynamic modification of DNA by hematoporphyrin (Hp) was characterized by the DNA sequencing technique using 32P-labeled DNA fragments, and the reaction mechanism was investigated by ESR spectroscopy. Mild photodynamic treatment of single-stranded DNA with Hp induced an alteration of guanine residues, and subsequent treatment with piperidine led to chain cleavages at each guanine residue. On the other hand, methylene blue plus light modified the guanine residues in both single-stranded and double-stranded DNA. ESR studies using 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidone as singlet oxygen traps demonstrated that Hp plus light produced almost the same amount of singlet oxygen as methylene blue plus light and that the photochemically generated singlet oxygen reacts significantly with guanylate but only slightly with other mononucleotides. An ESR spin destruction method revealed that photoexcited Hp generated porphyrin radical, but guanylate did not react with this radical. These results indicate that photoexcited Hp reacts with oxygen to generate singlet oxygen which oxidizes the guanine residues of single-stranded DNA and that the difference in photoreactivities of DNA with Hp and methylene blue may be explained in terms of the structural difference in their intercalating abilities.  相似文献   

10.
Mutation fixation at an ethenocytosine (εC) residue borne on transfected M13 single-stranded DNA is significantly enhanced in response to pretreatment of Escherichia coli cells with UV, alkylating agents or hydrogen peroxide, a phenomenon that we have called UVM for UV modulation of mutagenesis. The UVM response does not require the E. coli SOS or adaptive responses, and is observed in cells defective for oxyR , an oxidative DNA damage-responsive regulatory gene. UVM may represent either a novel DNA-repair phenomenon, or an unrecognized feature of DNA replication in damaged cells that affects a specific class of non-coding DNA lesions. To explore the range of DNA lesions subject to the UVM effect, we have examined mutation fixation at 3, N  4-ethenocytosine and 1, N  6-ethenoadenine, as well as at O6-methylguanine (O6mG). M13 viral single-stranded DNA constructs bearing a single mutagenic lesion at a specific site were transfected into cells pretreated with UV or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG). Survival of transfected viral DNA was measured as transfection efficiency, and mutagenesis at the lesion site was analysed by a quantitative multiplex sequence analysis technology. The results suggest that the UVM effect modulates mutagenesis at the two etheno lesions, but does not appear to significantly affect mutagenesis at O6mG. Because the modulation of mutagenesis is observed in cells incapable of the SOS response, these data are consistent with the notion that UVM may represent a previously unrecognized DNA damage-inducible response that affects the fidelity of DNA replication at certain mutagenic lesions in Escherichia coli .  相似文献   

11.
Intact pZ189 DNA was allowed to replicate in FL-FEN-1 cell line that was established in this laboratory in which the expression of FEN-1 gene was blocked by dexamethasone-inducible expression of antisense RNA to FEN-1. E. coli MBM7070 was transfected with the replicated plasmid, and those with mutations in the supF gene were identified. The frequency of mutants that did not contain recognizable changes in the electrophoretic mobility of the plasmid DNA was scored. The frequency of such mutants was 19.1 × 10−4 (34/17781), significantly higher than those of 2.9 × 10−4 (4/13668) and 3.0 × 10−4 (3/9857) in the corresponding controls, respectively. Sequence analysis of the supF genes of these mutants showed that all (37/37) the base substitutions occurred at C:G base pairs; 68% (23/37) of the base substitutions were base transversions, while 32% (12/37) were transitions. Approximately 76% (23/37) of these base substitutions occurred frequently at nine positions; two of these sites contain triple pyrimidine (T or C) repeat upstream to the mutated base; four of these sites consist of 5′-TTN1N2 and mutations occurred at N1 site sequence; another two sites have the characteristics of triple A flanked at both 5′ and 3′ side by TCT, with the base substitution occurring at C in the context sequence. These data suggested that these sites are the hot spot of mutagenesis in plasmid replicated in FEN-1-deficient cells. Besides the mutator phenotype of the FEN-1-deficient cell, it was also demonstrated that FEN-1-deficient cell exhibited an increased N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) sensitive phenotype.  相似文献   

12.
Single-stranded DNA has been speculated to be the initial signal in the DNA damage signaling pathway. We showed that introduction of single-stranded DNA with diverse sequences into mammalian cells induced DNA damage as well as apoptosis signals. Like DNA damaging agents, single-stranded DNA up-regulated p53 and activated the nuclear kinase ataxia telangiectasia mutant (ATM) as evidenced by phosphorylation of histone 2AX, an endogenous ATM substrate. Single-stranded DNA also triggered apoptosis as evidenced by the formation of caspase-dependent chromosomal DNA strand breaks, cytochrome c release, and increase in reactive oxygen species production. Moreover, single-stranded DNA-induced apoptosis was reduced significantly in p53 null cells and in cells treated with ATM small interfering RNA. These results suggest that single-stranded DNA may act upstream of ATM/p53 in DNA damage signaling.  相似文献   

13.
Oxidative stress may be an important factor in the development of diabetic complications. Advanced glycation end-products have drown attention as potential sources of oxidative stress in diabetes. We investigated the protective effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on oxidative DNA damage from reactive oxygen species or advanced glycation end-products in vitro, as well as effects of main fluvastatin metabolites and other inhibitors of the same enzyme, pravastatin and simvastatin. Protective effects were assessed in terms of the DNA breakage rate in a single-stranded phage DNA system in vitro. DNA was exposed to either reactive oxygen species or advanced glycation end-products. Fluvastatin and its metabolites showed a strong protective effect comparable to those seen with thiourea and mannitol, though pravastatin and simvastatin did not exert clear protective effects. Furthermore, fluvastatin reduced the mutagenesis by reactive oxygen species or advanced glycation end-products in Salmonella typhimurium test strains. Both pravastatin and simvastatin still lacked protective activity. Fluvastatin and its metabolites protect against oxidative DNA damage and may reduce risk of consequent diabetic complications.  相似文献   

14.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe(3+)/O(2)) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

15.
The shuttle vector plasmid PCF3A, carrying the supF target gene, can be transfected into monkey COS7 cells as single-stranded or double-stranded DNA. Single strand-derived plasmid progeny exhibited a 10-fold higher spontaneous mutation frequency than double strand-derived progeny. The location of spontaneous mutations obtained after transfection of the single-stranded vector shared similarities with that for double-stranded vectors. However, the nature of base changes was very different. Single-stranded PCF3A DNA was used to study ultraviolet-induced mutagenesis. An earlier report (Madzak and Sarasin, J. Mol. Biol., 218 (1991) 667-673) showed that single-stranded DNA exhibited a lower survival and a higher mutation frequency than double-stranded DNA after ultraviolet irradiation. In the present report, sequence analysis of mutant plasmids is presented. The use of a single-stranded vector allowed us to show the targeting of mutations at putative lesion sites and to determine the exact nature of the base implicated in each mutation. Frameshift mutations were more frequent after transfection of control or irradiated plasmid as single-stranded DNA than as double-stranded DNA. Multiple mutations, observed at a high frequency in the spontaneous and ultraviolet-induced mutation spectra following single-stranded DNA transfection, could be due to an error-prone polymerisation step acting on a single-stranded template.  相似文献   

16.
The mutational potency of apurinic/apyrimidinic (AP) sites induced by heat-treatment under acidic conditions has been studied in mammalian cells. Abasic sites were induced on a single-stranded DNA shuttle vector carrying the supF tRNA gene, eliminating, therefore, any ambiguity concerning the damaged strand. This vector was able to replicate both in mammalian cells and in bacteria where the mutations induced in animal cells on the supF tRNA gene were screened by the white/blue beta-galactosidase assay in the presence of isopropyl-1-thio-beta-D-galactopyranoside and 5-bromo-4-chloro-3-indoyl-beta-D-galactoside. All white colonies contained plasmid with a mutation on the target gene which was directly sequenced. Our results show that one AP site was induced/22 min of heating as measured by sensitivity of DNA to alkali denaturation or treatment with the AP-endonuclease activity of the FPG protein (Fapy-DNA glycosylase). Putative AP sites decrease survival of the plasmid with a lethal hit of one AP site/single-stranded molecule. Mutation frequency was increased by a factor of approximately six after 2 h at 70 degrees C. Most of the induced mutations were point mutations not distributed at random and clustered in the gene region which will give rise to the mature tRNA. Mutations were abolished by treatments that eliminated AP sites such as alkali treatment or incubation with the Fapy-DNA glycosylase protein. Under our experimental conditions, when only single mutations were taken into account, the order of base insertion opposite AP sites was G greater than A greater than T greater than C.  相似文献   

17.
H Sies  C F Menck 《Mutation research》1992,275(3-6):367-375
Singlet oxygen generated by photoexcitation and by chemiexcitation selectively reacts with the guanine moiety in nucleosides (kq + kr about 5 x 10(6) M-1s-1) and in DNA. The oxidation products include 8-oxo-7-hydro-deoxyguanosine (8-oxodG; also called 8-hydroxydeoxyguanosine) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). Singlet oxygen also causes alkali-labile sites and single-strand breaks in DNA. The biological consequences include a loss of transforming activity as studied with plasmids and bacteriophage DNA, and mutagenicity and genotoxicity. Employing shuttle vectors, it was shown that double-stranded vectors carrying singlet oxygen induced lesions seem to be processed in mammalian cells by DNA repair mechanisms efficient in preserving the biological activity of the plasmid but highly mutagenic in mammalian cells. Biological protection against singlet oxygen is afforded by quenchers, notably carotenoids and tocopherols. Major repair occurs by excision of the oxidized deoxyguanosine moieties by the Fpg protein, preventing mismatch of 8-oxodG with dA, which would generate G:C to T:A transversions.  相似文献   

18.
The damage profile produced by the reaction of singlet molecular oxygen with cellular DNA was determined using the comet assay associated with DNA repair enzymes. Singlet oxygen was produced intracellularly by thermal decomposition of a water-soluble endoperoxide of a naphthalene derivative which is able to penetrate through the membrane into mammalian cells. We found that the DNA modifications produced by singlet oxygen were almost exclusively oxidised purines recognised by the formamidopyrimidine DNA N-glycosylase. In contrast, significant amounts of direct strand breaks and alkali-labile sites or oxidised pyrimidines, detectable by the bacterial endonuclease III, were not produced.  相似文献   

19.
We studied the ability of mammalian cells to repair single-stranded nicks, gaps, and loops in DNA duplexes. Heteroduplexes prepared from derivatives of the shuttle vector pSV2neo were introduced into monkey COS cells. After replication, the plasmids were recovered and used to transform Escherichia coli. Plasmid DNA from the recovered colonies was tested for repair at each of six different sites. We observed that mammalian cells are capable of repairing single-stranded gaps and free single-stranded ends most efficiently. Regions containing twin loops were recognized, and one of the loops was excised. Portions of the molecules containing small single loops were also repaired. Markers which were 58 nucleotides apart were corepaired with nearly 100% efficiency, while markers which were 1,000 nucleotides or more apart were never corepaired. The mechanisms involved in heteroduplex repair in mammalian cells seem to be similar to those involved in repairing DNA lesions caused by physical and chemical agents.  相似文献   

20.
目的 探讨AUF1在胞质DNA引起的细胞葡萄糖代谢应答中的作用及其机制。方法 (1)用核质分离技术分离细胞核与细胞质,并通过生物素-亲和素亲和层析技术分离细胞质中与胞质DNA(ISD)结合的蛋白质,然后通过“银染-质谱”和“复合物-质谱”技术鉴定出差异蛋白——AUF1。再利用体外结合实验验证AUF1与胞质DNA的相互作用。(2)在胞质DNA刺激后,通过ATP检测试剂盒和CCK8细胞氧还活力检测试剂,比较野生型细胞和基于CRISPR/Cas9技术的AUF1基因敲除细胞中葡萄糖代谢应答情况。(3)通过半定量PCR技术,在野生型、基因敲除AUF1、基因敲除后回补AUF1或空载体的四类细胞中检测葡萄糖转运蛋白GLUTs以及葡萄糖代谢相关酶的mRNA表达情况,筛选出与细胞糖代谢相关的AUF1下游效应分子——GLUT3。进而用实时荧光定量PCR进行验证。(4)通过半定量和荧光定量PCR分析胞质DNA刺激下GLUT3的mRNA变化情况,分析胞质DNA的刺激是否影响GLUT3的mRNA表达。结果 (1)两次质谱分析均发现AUF1能与ISD结合。体外结合实验也证实,不论是原核表达的GST-AUF1还是真核细胞表达的GFP-AUF1均能与单链和双链的ISD相结合。(2)基因敲除AUF1后的HEK293细胞在用胞质DNA刺激后,胞内的ATP水平和对CCK8的还原能力都明显高于野生型细胞。提示AUF1基因敲除细胞内的葡萄糖代谢不受胞质DNA刺激所抑制,说明AUF1很可能参与了胞质DNA对细胞糖代谢的调节。(3)半定量PCR技术检测发现在AUF1敲除的细胞中GLUT3的mRNA明显减少,而其他的GLUT家族成员和代谢酶则没有显著差异。实时荧光定量PCR证实上述现象,提示AUF1很可能通过稳定GLUT3的mRNA参与葡萄糖代谢的调节。(4)无论是单链还是双链ISD刺激后的细胞中,GLUT3的mRNA均减少,说明GLUT3可能是胞质DNA对糖代谢的调节过程中的一个下游效应分子。结论 AUF1能与胞质DNA结合,很可能通过调节下游GLUT3的mRNA稳定性参与胞质DNA引起的糖代谢应答反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号