首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An interspecific hybrid between Hordeum chilense and H. bulbosum was produced. The hybrid resembles the male parent, but some characters from H. chilense are also present. Transgressive inheritance for other characters has also been observed. Neither chromosome instability nor homoeologous pairing was found.  相似文献   

2.
One of the main limitations of cereal breeding is the lack of genetic variability within cultivated crops. Hordeum chilense is a wild relative of Hordeum vulgare, which has been successfully used in the synthesis of amphiploids by crossing with Triticum spp. Among the agronomic traits of these new amphiploids, the allelic variation in the endosperm storage proteins and their influence on breadmaking and malting quality are of special interest. B-hordeins are sulfur rich prolamins, which account for 70–80% of the total hordein fraction in barley. In this work, rapid amplification of cDNA ends by PCR (RACE-PCR) has been used for the cloning of the full-length open reading frame (ORF) of six sequences of B3-hordeins from two lines of H. chilense. Two consensus sequences of 813 and 822 bp for the H1 and H7 lines, respectively, were determined by alignment of all the sequences generated. Between both lines, differences involving single base changes, which could correspond to single nucleotide polymorphisms (SNP), insertions and deletions were observed. Of these differences, only six out of the 13 within the ORF caused a change of amino acid. Two insertions/deletions of 9 and 12 bp were also observed between both lines. The derived amino acid sequences showed a similar structure to the B-hordeins from cultivated barley and other prolamins. The repetitive region is based on the repetition of the motif PQQPFPQQ. The copy number of the B3-hordeins was estimated as a minimum of nine and five copies for the H1 and H7 lines, respectively. The expression profile of the B-hordeins through the developing endosperm is also described in this work. This study of the storage proteins of H. chilense is a useful contribution to the knowledge of the genetic diversity available in wild relatives of cultivated barley. In addition, the origin of the different prolamins can be better understood with an in-depth knowledge of its wild equivalent.  相似文献   

3.
The proteins of Hordeum chilense grain were resolved into 25 major components by two-dimensional electrophoresis. Their solubilities in aqueous alcohol solutions were determined to distinguish prolamin storage proteins from metabolic and structural proteins. The prolamins were divided into two groups, based on the presence or absence of intermolecular disulfide bonds determined by gel-filtration chromatography. Using an incomplete set of Chinese Spring wheat-H. chilense disomic addition lines, the structural genes of 21 of the 26 most dominant seed proteins were assigned to chromosomes. The great majority of the prolamin genes, including those coding for a high molecular weight (HMW) prolamin subunit, was present on chromosome 1Hch. However, a small number of prolamin genes also occurred on chromosomes 5Hch and 7Hch. A minor protein, probably belonging to the nonstorage group of proteins, is coded by genes on 5Hch. Various ditelosomic addition lines and ditelosomic and disomic substitution lines for chromosome 7Hch were also analyzed by electrophoresis. This technique revealed that the genes for three major prolamins occur on the arm of chromosome 7Hch and that a gene for a minor protein, also thought to be a prolamin, occurs on the arm. These results are discussed in relation to the evolution of prolamin genes in the Triticeae.  相似文献   

4.
Summary Polyacrylamide and starch gel electrophoresis of esterase (EST), glutamate oxaloacetate transaminase (GOT) and phosphoglucomutase (PGM) isozymes in Hordeum chilense, Triticum turgidum conv. durum, the amphiploid H. chilense X T. turgidum (Tritordeum), and the durum wheat/H. chilense monosomic addition lines revealed the chromosomal location of one EST locus, two GOT loci and one PGM locus. Loci Est-H ch1 and Got-H ch2 were found on chromosome 6Hch,Got-H ch3 on chromosome 3Hch, and Pgm-H ch1 on chromosome 4Hch. These results lend evidence for the assumed homoeology relationships between chromosomes of Triticeae species.  相似文献   

5.
A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. in situ hybridization experiments showed dispersed organization of the sequences over all chromosomes of H. vulgare and the wild barley species H. bulbosum, H. marinum and H. murinum. Southern blot hybridization revealed different levels of polymorphism among barley species and the RFLP data were used to generate a phylogenetic tree for the genus Hordeum. Our data are in a good agreement with the classification system which suggests the division of the genus into four major groups, containing the genomes I, X, Y, and H. However, our investigation also supports previous molecular studies of barley species where the unique position of H. bulbosum has been pointed out. In our experiments, H. bulbosum generally had hybridization patterns different from those of H. vulgare, although both carry the I genome. Based on our results we present a hypothesis concerning the possible origin and phylogeny of the polyploid barley species H. secalinum, H. depressum and the H. brachyantherum complex.  相似文献   

6.
Hordeum chilense Roem. et Schult. is a South American wild barley that occurs exclusively in Chile and Argentina, where it is a component of natural pastures. This species has been crossed with durum and bread wheats to obtain a new amphiploid, named tritordeum, which presents agronomic traits of a new crop. The knowledge of the reproductive system is very important for the management of any species with breeding purposes. In this work with this finality, two hundred seventy seeds of 32 original spikes from a natural population were analysed for the variation of gliadin by A-PAGE. The data suggested that 98% of the genetic diversity appeared between spikes whereas only the 2.0% was within spikes. Only four out of 32 analysed spikes showed certain level of heterozygosity for the ω-gliadins. The Wright's fixation index for this population was established in F = 0.993 and the cross-fertilisation rate was equal to 0.4%, which suggested that H. chilense is an autogamous species.  相似文献   

7.
Summary A study of 6-phosphogluconate dehydrogenase and malate dehydrogenase isozyme expression in Triticum turgidum conv. durum /Hordeum chilense monosomic addition lines has revealed the location of two structural genes, 6-pgd-H ch 2 and Mdh-H ch 1, on chromosome 1Hch of H. chilense. The homoeology between 1Hch and other chromosome of Triticeae related species is discussed on the basis of isozyme gene analysis.  相似文献   

8.
Summary Highly repeated sequences of nuclear DNA from barley Hordeum vulgare (L.) variety Erfa were cloned. Several clones containing barley specific repeated DNA were analysed by sequence analysis and Southern blot hybridization. The investigated repeats differ from each other in their length, sequence and redundancy. Their length ranges from 36 bp to about 180 bp. The repeats are AT-rich and differ widely in their redundancy within the barley genome. Southern analysis showed that the repeats belong to different repetition complexes. The possibility for utilizing these clones as probes for simple and fast genome analysis is demonstrated in squash dot experiments.  相似文献   

9.
Summary The meiotic behaviour of the amphiploid Hordeum chilense X Triticum turgidum conv. durum using a C-banding staining method is studied. Nine pairs of chromosomes at metaphase-1 (4A, 7A and the seven of the B genome) were identified and the remaining wheat chromosomes (1A, 2A, 3A, 5A and 6A) and seven of the chilense (1 to 7 H ch chromosomes) were assigned to its particular genome. A similar mean number of univalents from parental genomes (wheat and wild barley) were found. No meiotic pairing between chilense and turgidum chromosomes was detected. Differences in the meiotic behaviour per chromosome and amongst genomes are explained on the basis of cytomorphological and heterochromatin characteristics.  相似文献   

10.
Two contrasting genome-specific DNA sequences were isolated from Aegilops speltoides (wild goat grass) and Hordeum chilense (wild barley), each representing more than 1 % of the genomes. These repetitive DNA fragments were identified as being genome-specific before cloning by genomic Southern hybridization (using total genomic DNA as a probe), and hence extensive screening of clones was not required. For each fragment, up to six recombinant plasmid clones were screened and about half were genome-specific. Clone pAesKB52 from Ae. speltoides was a 763 by EcoRI fragment, physically organized in simple tandem repeats and shown to localize to sub-telomerec chromosome regions of species with the Triticeae S-genome by in situ hybridization to chromosomes. The sequence data showed an internal duplication of some 280 bp, which presumably occurred before sequence amplification and dispersion, perhaps by unequal crossing-over or reciprocal translocation. In situ hybridization showed that the sequence distribution varied between closely related (S-genome) species. Clone pHcKB6 was a 339 by DraI fragment from H. chilense, also tandemly repeated but more variable; loss of the DraI site resulting in a ladder pattern in Southern blots which had little background smear. In situ hybridization showed that the tandem repeats were present as small clusters dispersed along all chromosome arms except at a few discrete regions including the centromeres and telomeres. The clone hybridized essentially specifically to the H-genome of H. chilense and hence was able to identify the origin of chromosomes in a H. chilense x Secale africanum hybrid by in situ hybridization. It has a high A + T content (66%), small internal duplications, and a 50 by degenerate inverted repeat. We speculate that it has dispersed by retrotransposition in association with other sequences carrying coding domains. The organization and evolution of such sequences are important in understanding long-range genome organization and the types of change that can occur on evolutionary and plant breeding timescales. Genome-specific sequences are also useful as markers for alien chromatin in plant breeding.  相似文献   

11.
Summary Repeated DNA sequences were detected as rapidly reannealing sequences in the chromosomal DNA of 13 out of 14Streptomyces species using either hypochromicity measurements or hydroxyapatite chromatography. These sequences made up between approximately 4% and 11% of the total DNA of these species; only inStreptomyces rimosus were repeated DNA sequences not detected. The repeated sequences fall into a number of distinct percentage G+C (%G+C) classes, many being of rather low %G+C. Analytical density ultracentrifugation of the DNA of these species indicated satellite bands of low %G+C, and high-resolution thermal denaturation profiles indicated the presence of blocks of DNA of low G+C content too. No such satellite band could be found inStreptomyces coelicolor and no low-%G+C DNA could be detected in its thermal denaturation profile. The possible relationship of this repeated DNA, an unusual occurrence in a procaryote, to genetic instability and genetic control mechanisms inStreptomyces is discussed.  相似文献   

12.
Summary Leaf disc transformation-regeneration technique was applied to the drought tolerant wild relative of cultivated tomato,Lycopersicon chilense, using a plasmid construct which contained the coding sequences of neomycin phosphotransferase (NPTII) and chloramphenicol acetyltransferase (CAT) genes. The two genotypes used, LA2747 and LA1930, showed a distinct difference in their aptitude to transformation; a higher success rate was obtained for the first genotype in every stage of the process. Shoots were formed on the regeneration medium containing 100 g/ml kanamycin through direct or indirect organogenesis. Root formation became only possible when the concentration of kanamycin was reduced to 50 g/ml. Expression of chloramphenicol acetyltransferase gene was observed in all of the kanamycin-screened plants after they matured; the activity of the gene was absent or low in some of the young plants. The presence of the CAT gene in transgenic plants was further confirmed by Southern blot analysis. Although transgenic plants grew to maturity, they did not produce fruit, owing to the self incompatibility ofL. chilense. Abbreviations BAP 6-benzylaminopurine - CAT chloramphenicol acetyltransferase - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - LB Luria Broth - EDTA ethylenediamine-tetraacetic acid  相似文献   

13.
Summary Two DNA sequences, R8.1 and R8.3, representing two distinct classes of tobacco genomic repeated DNA, were cloned and characterized by Southern blot analysis. Both R8.1 and R8.3 were found to be homologous to the Nicotiana tomentosiformis component of the allotetraploid Nicotiana tabacum genome, and each of them represents about 0.3% of nuclear DNA. The R8.1 and R8.3 differ in the mode of distribution in chromosomes, as revealed by in situ DNA/DNA hybridization.  相似文献   

14.
Genome-specific repetitive sequences in the genus Oryza   总被引:1,自引:0,他引:1  
Summary Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species divergence. In this paper, we report the isolation and characterization of four genome-type specific repetitive DNA sequences in the genus Oryza. Sequences specific to the AA, CC, EE or FF genome types are described. These genome-type specific repetitive sequences will be useful in classifying unknown species of wild or domestic rice, and in studying genome evolution at the molecular level. Using an AA genome-specific repetitive DNA sequence (pOs48) as a hybridization probe, considerable differences in its copy number were found among different varieties of Asian-cultivated rice (O. sativa) and other related species within the AA genome type. Thus, the relationship among some of the members of AA genome type can be deduced based on the degree of DNA sequence similarity of this repetitive sequence.  相似文献   

15.
Plasticity of the tobacco genome was studied by testing the DNAs of protoplast-derived regenerants with three different repetitive DNA sequences by the method of quantitative DNA/DNA hybridizations. A large population of 91 regenerants belonging to 35 different protoclones was analysed and a high degree of heterogeneity in the contents of the different DNA repeats was detected. The contents of middle repetitive sequences of two types were more stable or changed in the same direction, while the highly repetitive sequence varied independently and displayed a significant reduction in comparison with the two other sequences. Comparing the variation within the subpopulations of plants of the same clonal origin and the variation among the protoclones led to a conclusion that the pre-existing DNA variability in the starting plant material and/or thein vitro stress during the very early stages of protoclone regeneration played a decisive role in the formation of modified genomes in regenerants.  相似文献   

16.
Summary A genomic DNA library of Lupinus luteus cv. Ventus was constructed in the phage vector EMBL3 using Mb oI-digested DNA. Screening with a 1070 bp labelled repetitive unit from L. luteus yielded several DNA clones. The repetitive family is composed of elements whose length is at least 16 kb. The average copy number of the cloned fragments is 5.0 × 104 per haploid genome and constitutes approximately 3% of the total L. luteus genome. The homologous repeats were found in all ten cultivars of L. luteus tested but were not detected in two cultivars each of the closely related species Lupinus albus and Lupinus angustifolius. The EcoRI family fragments could thus be considered as species-specific DNA elements. These fragments may be useful as molecular markers in the genetic manipulation of L. luteus.  相似文献   

17.
Summary The endosperm proteins encoded by the genome Hch in Hordeum chilense, Tritordeum (amphiploid Hordeum chilense x Triticum turgidum), common wheat-H. chilense addition lines, and the segregating plants resulting from the cross Tritordeum x T. turgidum, were fractionated by three electrophoretical techniques: SDS-PAGE, A-PAGE, and bidimensional PAGE. Prolamin subunits with a high molecular weight (HMW) were well visualized by SDS-PAGE, the A-PAGE technique permitted good resolution for many hordeins and gliadins, and two-dimensional electrophoresis allowed new sets of bands coded by gene complexes from H. chilense chromosomes to be distinguished. The loci Hor-Hch1 (up to 11 subunits belonging to the -, — and -hordeins), Glu-Hch1 (one HMW prolamin subunit), Hor-Hch2 (one -hordein), and Hor-Hch3 (up to four -hordeins) were located on the H. chilense chromosomes 1Hch, 5Hch, and 7Hch.  相似文献   

18.
Zhang D  Yang Q  Ding Y  Cao X  Xue Y  Cheng Z 《Genomics》2008,92(2):107-114
Tandem repetitive sequences are DNA motifs common in the genomes of eukaryotic species and are often embedded in heterochromatic regions. In most eukaryotes, ribosomal genes, as well as centromeres and telomeres or subtelomeres, are associated with abundant tandem arrays of repetitive sequences and typically represent the final barriers to completion of whole-genome sequencing. The nature of these repeats makes it difficult to estimate their actual sizes. In this study, combining the two cytological techniques DNA fiber-FISH and pachytene chromosome FISH allowed us to characterize the tandem repeats distributed genome wide in Antirrhinum majus and identify four types of tandem repeats, 45S rDNA, 5S rDNA, CentA1, and CentA2, representing the major tandem repetitive components, which were estimated to have a total length of 18.50 Mb and account for 3.59% of the A. majus genome. FISH examination revealed that all the tandem repeats correspond to heterochromatic knobs along the pachytene chromosomes. Moreover, the methylation status of the tandem repeats was investigated in both somatic cells and pollen mother cells from anther tissues using an antibody against 5-methylcytosine combined with sequential FISH analyses. Our results showed that these repeats were hypomethylated in anther tissues, especially in the pollen mother cells at pachytene stage.  相似文献   

19.
Imidazolinone herbicides resistant varieties, induced by mutations at the AHAS gene (acetohydroxyacid synthase), have been developed in many crops. Hexaploid tritordeum (Tritordeum Asch. & Graebn.) is the amphiploid derived from the cross between Hordeum chilense (HchHch) and durum wheat Triticum turgidum L. (Thell) (AABB). Tritordeums have the potential to become a new crop with high added-value for food or feed. Mutagenesis with EMS was conducted to obtain imidazolinone resistant lines derived of the tritordeum HT621. Eleven M3 plants were selected after imidazolinone treatment and five descendants of two of these lines (HT621-M3R1-3 and HT621-M3R10-1) were analyzed at the molecular level. Partial sequences of the three homologous AHAS loci in genomes A, B, and Hch were obtained as well as those of HT621. A partial sequence of the AHAS gene in Hordeum chilense is first described in this work, and the designation ahasL-H ch 1 is proposed. A single Ser-Asn627 substitution at the AHAS locus in the B genome is responsible of resistance in both lines. We propose the name AhasL-B2 for this resistance allele. This is the first report of the selection of imidazolinone resistant lines of tritordeum and the molecular characterization of the mutation conferring this resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号