首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The basal forebrain (BF) plays an important role in regulating cortical activity and sleep/wake states. Both cholinergic and non-cholinergic neurons of the BF project to the cerebral cortex and hippocampus, whereas the hypothalamus and brainstem nuclei are mostly innervated by non-cholinergic BF neurons. Neurons in the BF show various discharge profiles in relation to cortical activity and behavioral states and are differentially modulated by neurotransmitters of other sleep/wake regulatory neurons. Recent technical advances have made it possible to correlate discharge profiles of single BF neurons during sleep/wake states with their neurochemical phenotypes, and to make selective lesions of certain cell types. The goal of this review is to summarize the current knowledge of the anatomy and sleep/wake regulatory functions of cholinergic and non-cholinergic BF neurons. We will first review the anatomical heterogeneity of BF neurons, and then discuss recent evidence for the firing patterns of BF cholinergic and non-cholinergic neurons during natural sleep–wake patterns, and finally, discuss their roles in sleep homeostasis. It is proposed that through different neurotransmitters, projections, and state-regulated activity, the cholinergic and non-cholinergic BF neurons collectively and differently regulate cortical activity and sleep-wake states.

  相似文献   

2.
The effects of waking and sleep on the response properties of auditory units in the ventral cochlear nucleus (CN) were explored by using extracellular recordings in chronic guinea-pigs. Significant increases and decreases in firing rate were detected in two neuronal groups, a) the "sound-responding" and b) the "spontaneous" (units that do not show responses to any acoustic stimuli controlled by the experimenter). The "spontaneous" may be considered as belonging to the auditory system because the corresponding units showed a suppression of their discharge when the receptor was destroyed. The auditory CN units were characterized by their PSTH in response to tones at their characteristic frequency and also by the changes in firing rate and probability of discharge evaluated during periods of waking, slow wave and paradoxical sleep. The CNS performs functions dependent on sensory inputs during wakefulness and sleep phases. By studying the auditory input at the level of the ventral CN with constant sound stimuli, it was shown that, in addition to the firing rate shifts, some units presented changes in the temporal probability of discharge, implying central actions on the corresponding neurons. The mean latency of the responses, however, did not show significant changes throughout the sleep-waking cycle. The auditory efferent pathways are postulated to modulate the auditory input at CN level during different animal states. The probability of firing and the changes in the temporal pattern, as shown by the PSTH, are thus dependent on both the auditory input and the functional brain state related to the sleep-waking cycle.  相似文献   

3.
Influence of electrical stimulation of the medial preoptic area of cats on characteristics of paradoxical sleep and activity of medial preoptic neurons were studied in the course of sleep-waking cycle. Low-frequency stimulation of this structure in the state of slow-wave sleep evoked short-latency electrocortical desynchronization and induced transition to paradoxical sleep or paradocical sleep-like state. The same stimulation during the whole period of paradoxical sleep results in a reduction of its duration, practically complete disappearance of tonic stage, and increase in the density of rapid eye movements in phasic stage. The vast majority of meurons in the medial preoptic area decreased their firing rates during quiet waking and slow-wave sleep and dramatically increased their activity during paradoxical sleep. More than 50% of such neurons displayed activation 20-70 s prior to the appearance of electrocorticographic correlates of paradoxical sleep. Some neurons were selectively active during paradoxical sleep. Approximately 50% of cells increased their firing rates a few seconds prior to and/or during series of rapid eye movements. The results suggest that the medial preoptic area contains the units of the executive system (network) of paradoxical sleep and are involved in the mechanisms of neocortical desynchronization.  相似文献   

4.
Slow-wave sleep: serotonin, neuronal plasticity, and seizures   总被引:4,自引:0,他引:4  
  相似文献   

5.
Previous work showed that sleep is associated with increased brain protein synthesis and that arrest of protein synthesis facilitates sleep. Arrest of protein synthesis is induced during the endoplasmic reticulum (ER) stress response, through phosphorylation of eukaryotic initiation factor 2alpha (p-eIF2alpha). We tested a hypothesis that elevation of p-eIF2alpha would facilitate sleep. We studied the effects of intracerebroventricular infusion of salubrinal (Salub), which increases p-eIF2alpha by inhibiting its dephosphorylation. Salub increased deep slow wave sleep by 255%, while reducing active waking by 49%. Delta power within non-rapid eye movement (NREM) sleep was increased, while power in the sigma, beta, and gamma bands during NREM was reduced. We found that Salub increased expression of p-eIF2alpha in the basal forebrain (BF) area, a sleep-wake regulatory brain region. Therefore, we quantified the p-eIF2alpha-immunolabeled neurons in the BF area; Salub administration increased the number of p-eIF2alpha-expressing noncholinergic neurons in the caudal BF. In addition, Salub also increased the intensity of p-eIF2alpha expression in both cholinergic and noncholinergic neurons, but this was more widespread among the noncholinergic neurons. Our findings support a hypothesis that sleep is facilitated by signals associated with the ER stress response.  相似文献   

6.
Yanagihara S  Hessler NA 《PloS one》2011,6(10):e25879
Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.  相似文献   

7.
During slow wave sleep and quiet wakefulness, the hippocampus generates high frequency field oscillations (ripples) during which pyramidal neurons replay previous waking activity in a temporally compressed manner. As a result, reactivated firing patterns occur within shorter time windows propitious for synaptic plasticity within the hippocampal network and in downstream neocortical structures. This is consistent with the long-held view that ripples participate in strengthening and reorganizing memory traces, possibly by mediating information transfer to neocortical areas. Recent studies have confirmed that ripples and associated neuronal reactivations play a causal role in memory consolidation during sleep and rest. However, further research will be necessary to better understand the neurophysiological mechanisms of memory consolidation, in particular the selection of reactivated assemblies, and the functional specificity of awake ripples.  相似文献   

8.
In this article, we discuss mathematical models that address the control of sleep-wake behavior in the infant and adult rodent and a model that addresses changes in single-cell firing patterns in the hippocampus across wake and rapid eye movement (REM) sleep states. Each of the models describes the dynamics of experimentally identified neuronal components--either the firing activity of wake-and sleep-promoting neuronal populations or the spiking activity of hippocampal pyramidal neurons. Our discussion of each model illustrates how a mathematical model that describes the temporal dynamics of the modeled neuronal components can reveal specifics about proposed neuronal mechanisms that underlie sleep-wake regulation or sleep-specific firing patterns. For example, the dynamics of the models developed for sleep-wake regulation in the infant rodent lend insight into the involved brain-stem neuronal populations and the evolution of the network during maturation. The results of the model for sleep-wake regulation in the adult rodent suggest distinct properties of the involved neuronal populations and their interactions that account for long-lasting and brief waking bouts. The dynamics of the model for sleep-specific hippocampal neural activity proposes neural mechanisms to account for observed activity changes that can invoke synaptic reorganization associated with learning and memory consolidation.  相似文献   

9.
Evidence suggests that adenosine (AD) is an endogenous sleep factor. The hypnogenic action of AD is mediated through its inhibitory A1 and excitatory A2A receptors. Although AD is thought to be predominantly active in the wake-active region of the basal forebrain (BF), a hypnogenic action of AD has been demonstrated in several other brain areas, including the preoptic area. We hypothesized that in lateral preoptic area (LPOA), a region with an abundance of sleep-active neurons, AD acting via A1 receptors would induce waking by inhibition of sleep-active neurons and that AD acting via A2A receptors would promote sleep by stimulating the sleep-active neurons. To this end, we studied the effects on sleep of an AD transport inhibitor, nitrobenzyl-thio-inosine (NBTI) and A1 and A2A receptor agonists/antagonists by microdialyzing them into the LPOA. The results showed that, in the sleep-promoting area of LPOA: 1) A1 receptor stimulation or inhibition of AD transport by NBTI induced waking and 2) A2A receptor stimulation induced sleep. We also confirmed that NBTI administration in the wake promoting area of the BF increased sleep. The effects of AD could be mediated either directly or indirectly via interaction with other neurotransmitter systems. These observations support a hypothesis that AD mediated effects on sleep-wake cycles are site and receptor dependent.  相似文献   

10.
Sleep is critical for memory consolidation, although the exact mechanisms mediating this process are unknown. Combining reduced network models and analysis of in vivo recordings, we tested the hypothesis that neuromodulatory changes in acetylcholine (ACh) levels during non-rapid eye movement (NREM) sleep mediate stabilization of network-wide firing patterns, with temporal order of neurons’ firing dependent on their mean firing rate during wake. In both reduced models and in vivo recordings from mouse hippocampus, we find that the relative order of firing among neurons during NREM sleep reflects their relative firing rates during prior wake. Our modeling results show that this remapping of wake-associated, firing frequency-based representations is based on NREM-associated changes in neuronal excitability mediated by ACh-gated potassium current. We also show that learning-dependent reordering of sequential firing during NREM sleep, together with spike timing-dependent plasticity (STDP), reconfigures neuronal firing rates across the network. This rescaling of firing rates has been reported in multiple brain circuits across periods of sleep. Our model and experimental data both suggest that this effect is amplified in neural circuits following learning. Together our data suggest that sleep may bias neural networks from firing rate-based towards phase-based information encoding to consolidate memories.  相似文献   

11.
The sleep disorder narcolepsy is now linked with a loss of neurons containing the neuropeptide hypocretin (also known as orexin). The hypocretin neurons are located exclusively in the lateral hypothalamus, a brain region that has been implicated in arousal based on observations made by von Economo during the viral encephalitic epidemic of 1916–1926. There are other neuronal phenotypes located in the lateral hypothalamus that are distinct and separate from the hypocretin neurons. Here the authors identify these neurons based on peptides and neurotransmitters that they express and review roles of these neurons in sleep. Given the heterogeneity of the neuronal phenotypes in the lateral hypothalamus, it is likely that hypocretin neurons, as well as other types of neurons in the lateral hypothalamus, influence sleep and provide state-dependent regulation of physiological functions.  相似文献   

12.
The pattern of neuronal spike activity in the amygdaloid structure was studied in the sleep-wake cycle during experiments on unrestrained rats. It was shown that most neurons of the dorsomedial portion of the amygdala display greater spike activity during active wakefulness (80%) and paradoxical sleep (66.7%) than during slow-wave sleep. Most neurons of the basolateral amygdaloid region discharged at high frequency during active wakefulness (84.6%) and during paradoxial sleep (38.4%) compared with the frequency of firing during slow-wave sleep. Some neurons were found whose rate of discharge rose during slow-wave sleep in comparison with a similar period of paradoxical sleep (38.4%) and of active wakefulness (7.7%). Our findings show how the pattern of neuronal activity in the dosromedial and basolateral regions of the amygdaloid structure differs at various stages of the sleep-wake cycle. It is postulated that this structure serves mainly to regulate emotionally motivated processes rather than helping to govern the basic mechanisms of the sleep-wake cycle.Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 747–756, November–December, 1985.  相似文献   

13.
John J  Wu MF  Boehmer LN  Siegel JM 《Neuron》2004,42(4):619-634
Noradrenergic, serotonergic, and histaminergic neurons are continuously active during waking, reduce discharge during NREM sleep, and cease discharge during REM sleep. Cataplexy, a symptom associated with narcolepsy, is a waking state in which muscle tone is lost, as it is in REM sleep, while environmental awareness continues, as in alert waking. In prior work, we reported that, during cataplexy, noradrenergic neurons cease discharge, and serotonergic neurons greatly reduce activity. We now report that, in contrast to these other monoaminergic "REM-off" cell groups, histamine neurons are active in cataplexy at a level similar to or greater than that in quiet waking. We hypothesize that the activity of histamine cells is linked to the maintenance of waking, in contrast to activity in noradrenergic and serotonergic neurons, which is more tightly coupled to the maintenance of muscle tone in waking and its loss in REM sleep and cataplexy.  相似文献   

14.
Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and cannabidiol (CBD) are two major constituents of Cannabis sativa. Delta(9)-THC modulates sleep, but no clear evidence on the role of CBD is available. In order to determine the effects of CBD on sleep, it was administered intracerebroventricular (icv) in a dose of 10 microg/5 microl at the beginning of either the lights-on or the lights-off period. We found that CBD administered during the lights-on period increased wakefulness (W) and decreased rapid eye movement sleep (REMS). No changes on sleep were observed during the dark phase. Icv injections of CBD (10 microg/5microl) induced an enhancement of c-Fos expression in waking-related brain areas such as hypothalamus and dorsal raphe nucleus (DRD). Microdialysis in unanesthetized rats was carried out to characterize the effects of icv administration of CBD (10 microg/5 microl) on extracellular levels of dopamine (DA) within the nucleus accumbens. CBD induced an increase in DA release. Finally, in order to test if the waking properties of CBD could be blocked by the sleep-inducing endocannabinoid anandamide (ANA), animals received ANA (10 microg/2.5 microl, icv) followed 15 min later by CBD (10 microg/2.5 microl). Results showed that the waking properties of CBD were not blocked by ANA. In conclusion, we found that CBD modulates waking via activation of neurons in the hypothalamus and DRD. Both regions are apparently involved in the generation of alertness. Also, CBD increases DA levels as measured by microdialysis and HPLC procedures. Since CBD induces alertness, it might be of therapeutic value in sleep disorders such as excessive somnolence.  相似文献   

15.
O'Neill J  Senior T  Csicsvari J 《Neuron》2006,49(1):143-155
We observed sharp wave/ripples (SWR) during exploration within brief (<2.4 s) interruptions of or during theta oscillations. CA1 network responses of SWRs occurring during exploration (eSWR) and SWRs detected in waking immobility or sleep were similar. However, neuronal activity during eSWR was location dependent, and eSWR-related firing was stronger inside the place field than outside. The eSPW-related firing increase was stronger than the baseline increase inside compared to outside, suggesting a "supralinear" summation of eSWR and place-selective inputs. Pairs of cells with similar place fields and/or correlated firing during exploration showed stronger coactivation during eSWRs and subsequent sleep-SWRs. Sequential activation of place cells was not required for the reactivation of waking co-firing patterns; cell pairs with symmetrical cross-correlations still showed reactivated waking co-firing patterns during sleep-SWRs. We suggest that place-selective firing during eSWRs facilitates initial associations between cells with similar place fields that enable place-related ensemble patterns to recur during subsequent sleep-SWRs.  相似文献   

16.
Steriade M  Timofeev I 《Neuron》2003,37(4):563-576
Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related cortical neurons in vivo demonstrate that, during natural slow-wave sleep oscillations or their experimental models, both thalamic and cortical neurons progressively enhance their responsiveness. This potentiation lasts for several minutes after the end of oscillatory periods. Cortical neurons display self-sustained activity, similar to responses evoked during previous epochs of stimulation, despite the fact that thalamic neurons remain under a powerful hyperpolarizing pressure. These data suggest that, far from being a quiescent state during which the cortex and subcortical structures are globally inhibited, slow-wave sleep may consolidate memory traces acquired during wakefulness in corticothalamic networks. Similar phenomena occur as a consequence of fast oscillations during brain-activated states.  相似文献   

17.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   

18.
The suprachiasmatic nuclei (SCN) constitute the principal pacemaker of the circadian timing system in mammals. The generated rhythm is forwarded mostly through projections to various hypothalamic nuclei. On the other hand, the regulated processes feedback to the SCN. One of the possible feedback pathways is the orexinergic projection from the lateral hypothalamus. Orexins are recently identified neuropeptides with an overall facilitatory effect on waking behaviors. Orexinergic fibers are widely distributed throughout the brain and are also present in the SCN. In this study we examined the effect of orexin-A on the spontaneous activity of rat SCN cell in vitro. Neurons showed 2 different firing pattern (continuous-regular, intermittent-irregular). Orexin-A increased firing rate in both cell types at 10(-8) M concentration, but caused a clear suppression of neuronal activity at 10(-7) M. Continuously firing neurons were less responsive than those firing intermittently. These results show that orexin-A may play a role in the modulation of the circadian pacemaker function. The neuropeptide might exert both direct, postsynaptic effects on SCN neurons and indirect, presynaptic effects on excitatory and inhibitory terminals. The dose-dependent modification of the firing rate indicate that the weight of these factors changes with the concentration of orexin-A.  相似文献   

19.
Single unit activity was recorded from the area of the substantia nigra in freely moving cats. A sub-population of these neurons had the following characteristics: long action potential durations (2–4 msec); relatively slow discharge rates (2–6 spikes/sec); firing as single spikes along with periods of bursting activity in which spike amplitude successively decreased; suppression of unit activity by systemic injection of apomorphine and increased activity after systemic injection of haloperidol. These characteristics are similar to those of identified dopamine neurons recorded in chloral hydrate anesthetized or peripherally paralyzed rats. Therefore, based upon these physiological and pharmacological similarities, this study represents the first systematic report providing evidence for recording the activity of dopaminergic neurons in freely moving cats. In addition, when these cells were studied across the sleep-waking cycle they displayed little variation in firing rates between waking, slow wave sleep and REM sleep.  相似文献   

20.
Upper airway dilator activity during sleep appears to be diminished under conditions of enhanced sleep propensity, such as after sleep deprivation, leading to worsening of obstructive sleep apnea (OSA). Non-rapid eye movement (NREM) sleep propensity originates in sleep-active neurons of the preoptic area (POA) of the hypothalamus and is facilitated by activation of POA warm-sensitive neurons (WSNs). We hypothesized that activation of WSNs by local POA warming would inhibit activity of the posterior cricoarytenoid (PCA) muscle, an airway dilator, during NREM sleep. In chronically prepared unrestrained cats, the PCA exhibited inspiratory bursts in approximate synchrony with inspiratory diaphragmatic activity during waking, NREM, and REM. Integrated inspiratory PCA activity (IA), peak activity (PA), and the lead time (LT) of the onset of inspiratory activity in PCA relative to diaphragm were significantly reduced in NREM sleep and further reduced during REM sleep compared with waking. Mild bilateral local POA warming (0.5-1.2 degrees C) significantly reduced IA, PA, and LT during NREM sleep compared with a prewarming NREM baseline. In some animals, effects of POA warming on PCA activity were found during waking or REM. Because POA WSN activity is increased during spontaneous NREM sleep and regulates sleep propensity, we hypothesize that this activation contributes to reduction of airway dilator activity in patients with OSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号